1       搭建ES集群

集群的说明

我们计划集群名称为:leyou-elastic,部署3个elasticsearch节点,分别是:

node-01:http端口9201,TCP端口9301

node-02:http端口9202,TCP端口9302

node-03:http端口9203,TCP端口9303

第一步:直接复制前天准备好的ES,但是复制之前一定要把之前的数据清理

清理的方式就是 删除data文件夹

第二步:复制完后文件夹改名为

第三步:修改配置文件elasticsearch.yml

内容为:

http.cors.enabled: true

http.cors.allow-origin: "*"

network.host: 127.0.0.1

# 集群的名称

cluster.name: leyou-elastic

#当前节点名称 每个节点不一样

node.name: node-01

#数据的存放路径 每个节点不一样

path.data: d:\class96\elasticsearch-9201\data

#日志的存放路径 每个节点不一样

path.logs: d:\class96\elasticsearch-9201\log

# http协议的对外端口 每个节点不一样

http.port: 9201

# TCP协议对外端口 每个节点不一样

transport.tcp.port: 9301

#三个节点相互发现

discovery.zen.ping.unicast.hosts: ["127.0.0.1:9301","127.0.0.1:9302","127.0.0.1:9303"]

#声明大于几个的投票主节点有效,请设置为(nodes / 2) + 1

discovery.zen.minimum_master_nodes: 2

# 是否为主节点

node.master: true

修改完成后使用utf-8的方式另存为一下,不然不认中文

第四步:再复制两份,总共三份,修改按照上述配置文件修改

第五步:分别启动三个ES

第六步:修改kibana指向的ES集群,然后启动

这里指向9201  9202  9303是没有区别的

第七步:使用elasticsearch-head插件可以看集群的情况

2       使用kibana操作

指定索引库的分片数量和副本数,默认分片5,副本数是1

put heima

{

"settings":{

"number_of_shards":3,

"number_of_replicas":1

}

}

使用head插件查看

原生的API

RestAPI

SpringDataElasticSearch方式

3       RestAPI操作ES

1.1     使用kibana创建一个索引库

PUT /item

{

"settings":{

"number_of_shards":3,

"number_of_replicas":1

},

"mappings": {

"docs": {

"properties": {

"id": {

"type": "keyword"

},

"title": {

"type": "text",

"analyzer": "ik_max_word"

},

"category": {

"type": "keyword"

},

"brand": {

"type": "keyword"

},

"images": {

"type": "keyword",

"index":  false

},

"price": {

"type": "double"

}

}

}

}

}

1.2     创建maven项目

第一步:创建maven项目

第二步:导入依赖

<parent>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-parent</artifactId>

<version>2.1.3.RELEASE</version>

</parent>

<dependencies>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-test</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-logging</artifactId>

</dependency>

<dependency>

<groupId>com.google.code.gson</groupId>

<artifactId>gson</artifactId>

<version>2.8.5</version>

</dependency>

<dependency>

<groupId>org.apache.commons</groupId>

<artifactId>commons-lang3</artifactId>

<version>3.8.1</version>

</dependency>

<dependency>

<groupId>org.elasticsearch.client</groupId>

<artifactId>elasticsearch-rest-high-level-client</artifactId>

<version>6.4.3</version>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>

</plugins>

</build>

1.3     代码操作

1.3.1   初始化client

private   RestHighLevelClient client = null;
private Gson gson
= new Gson();
@Before
public void init(){
    client
= new RestHighLevelClient(
            RestClient.builder(
                    new HttpHost("localhost",
9201, "http"),
                    new HttpHost("localhost",
9202, "http"),
                    new HttpHost("localhost",
9203, "http")));

}

1.3.2   添加文档数据

准备一个pojo类

@Data
@AllArgsConstructor  //全参构造方法
@NoArgsConstructor  //无参构造方法
public class Item implements Serializable{
    private Long
id;
    private String
title; //标题
   
private String category;// 分类
   
private String brand; // 品牌
   
private Double price; // 价格
   
private String images; // 图片地址
}

//        新增或修改  IndexRequest
       
Item
item = new Item(1L,"大米6X手机","手机","小米",1199.0,"http.jpg");
        String jsonStr = gson.toJson(item);
        IndexRequest request = new IndexRequest("item","docs",item.getId().toString());
        request.source(jsonStr,
XContentType.JSON);
        client.index(request,
RequestOptions.DEFAULT);

1.3.3   修改文档数据

就是使用上面的新增方法,它既是新增也是修改

1.3.4   根据id获取文档数据

GetRequest request = new
GetRequest("item","docs","1");
GetResponse getResponse = client.get(request,
RequestOptions.DEFAULT);
String sourceAsString = getResponse.getSourceAsString();
Item item = gson.fromJson(sourceAsString,
Item.class);
System.out.println(item);

1.3.5   删除文档数据

DeleteRequest deleteRequest = new
DeleteRequest("item","docs","1");
 
client.delete(deleteRequest,RequestOptions.DEFAULT);

1.3.6   批量新增文档数据

// 准备文档数据:
List<Item> list = new ArrayList<>();
list.add(new Item(1L, "小米手机7", "手机", "小米", 3299.00,"http://image.leyou.com/13123.jpg"));
list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3699.00,"http://image.leyou.com/13123.jpg"));
list.add(new Item(3L, "华为META10", "手机", "华为", 4499.00,"http://image.leyou.com/13123.jpg"));
list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00,"http://image.leyou.com/13123.jpg"));
list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00,"http://image.leyou.com/13123.jpg"));

BulkRequest bulkRequest = new BulkRequest();
for (Item item : list) {
    bulkRequest.add(new IndexRequest("item","docs",item.getId().toString()).source(JSON.toJSONString(item),XContentType.JSON)) ;
}
client.bulk(bulkRequest,RequestOptions.DEFAULT);

1.3.7   各种查询

@Test
public void testQuery() throws Exception{
    SearchRequest searchRequest = new SearchRequest("item");
    SearchSourceBuilder
searchSourceBuilder = new SearchSourceBuilder();

searchSourceBuilder.query(QueryBuilders.matchAllQuery());
   
searchSourceBuilder.query(QueryBuilders.termQuery("title","小米"));
    searchSourceBuilder.query(QueryBuilders.matchQuery("title","小米手机"));
   
searchSourceBuilder.query(QueryBuilders.fuzzyQuery("title","大米").fuzziness(Fuzziness.ONE));
   
searchSourceBuilder.query(QueryBuilders.rangeQuery("price").gte(3000).lte(4000));
    searchSourceBuilder.query(QueryBuilders.boolQuery().must(QueryBuilders.termQuery("title","手机"))
                                                       
.must(QueryBuilders.rangeQuery("price").gte(3000).lte(3500)));
   
searchRequest.source(searchSourceBuilder);
    SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
    SearchHits searchHits =
searchResponse.getHits();
    long total
= searchHits.getTotalHits();
    System.out.println("总记录数:"+total);
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit
hit : hits) {
        String sourceAsString =
hit.getSourceAsString();
        Item item = JSON.parseObject(sourceAsString,
Item.class);
        System.out.println(item);
    }
}

1.3.8   过滤

1、属性字段显示的过滤

searchSourceBuilder.fetchSource(new String[]{"title","category"},null);
searchSourceBuilder.query(QueryBuilders.matchAllQuery());

2、查询结果的过滤

searchSourceBuilder.query(QueryBuilders.termQuery("title","手机"));
searchSourceBuilder.postFilter(QueryBuilders.termQuery("brand","小米"));

1.3.9   分页

searchSourceBuilder.query(QueryBuilders.matchAllQuery());
searchSourceBuilder.from(0);  //起始位置
searchSourceBuilder.size(3);  //每页显示条数

1.3.10 排序

searchSourceBuilder.sort("id", SortOrder.ASC); 
// 参数1:排序的域名  参数2:顺序

1.3.11 高亮

构建高亮的条件

searchSourceBuilder.query(QueryBuilders.termQuery("title","小米"));
HighlightBuilder highlightBuilder = new HighlightBuilder();
highlightBuilder.preTags("<font
style='color:red'>"
);
highlightBuilder.postTags("</font>");
highlightBuilder.field("title");

searchSourceBuilder.highlighter(highlightBuilder);

解析高亮的结果

for (SearchHit hit : hits) {

Map<String, HighlightField>
highlightFields = hit.getHighlightFields();
    HighlightField highlightField =
highlightFields.get("title");
   String title =
highlightField.getFragments()[0].toString();

String sourceAsString =
hit.getSourceAsString();
    Item item = JSON.parseObject(sourceAsString,
Item.class);
    item.setTitle(title);
    System.out.println(item);
}

1.3.12 聚合

需求:根据品牌统计数量

构建的条件代码

searchSourceBuilder.query(QueryBuilders.matchAllQuery());

searchSourceBuilder.aggregation(AggregationBuilders.terms("brandAvg").field("brand"));

解析结果:

Aggregations aggregations =
searchResponse.getAggregations();
Terms terms = aggregations.get("brandAvg");
List<? extends Terms.Bucket>
buckets = terms.getBuckets();
for (Terms.Bucket bucket : buckets) {
    System.out.println(bucket.getKeyAsString()+":"+bucket.getDocCount());
}

4      
SpringDataElasticSearch框架的使用

1.4    
准备环境

1、添加依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>

2、创建引导类

@SpringBootApplication
public class EsApplication {
    public
static void
main(String[] args) {
        SpringApplication.run(EsApplication.class,args);
    }
}

3、添加配置文件
application.yml

spring:
  data:
    elasticsearch:
      cluster-name: leyou-elastic
      cluster-nodes: 127.0.0.1:9301,127.0.0.1:9302,127.0.0.1:9303

4、创建一个测试类,注入SDE提供的一个模板

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataEsManager {

@Autowired
    private ElasticsearchTemplate
elasticsearchTemplate;
}

Kibana:http

原始的api:tcp

RestAPI:http

Sde: tcp

1.5    
操作索引库和映射

第一步:准备一个pojo,并且构建和索引的映射关系

@Data
@AllArgsConstructor
@NoArgsConstructor
@Document(indexName="leyou",type
= "goods",shards = 3,replicas = 1)
public class Goods implements Serializable{
    @Field(type
= FieldType.Long)
    private Long
id;
    @Field(type
= FieldType.Text,analyzer = "ik_max_word",store = true)
    private String
title; //标题
   
@Field(type = FieldType.Keyword,index = true,store = true)
    private String
category;//
分类
   
@Field(type = FieldType.Keyword,index = true,store = true)
    private String
brand; //
品牌
   
@Field(type = FieldType.Double,index = true,store
= true)
    private Double
price; //
价格
   
@Field(type = FieldType.Keyword,index = false,store = true)
    private String
images; //
图片地址
}

第二步:创建索引库和映射

@Test
    public void addIndexAndMapping(){
//        elasticsearchTemplate.createIndex(Goods.class);
//根据pojo中的注解创建索引库

elasticsearchTemplate.putMapping(Goods.class); //根据pojo中的注解创建映射
    }

1.6    
操作文档

//        新增或修改
//        Goods goods = new
Goods(1L,"大米6X手机","手机","小米",1199.0,"http.jpg");
//        goodsRespository.save(goods);
//save or update

//        根据id查询
//        Optional<Goods> optional
= goodsRespository.findById(1L);
//        Goods goods = optional.get();
//        System.out.println(goods);

//        删除
//        goodsRespository.deleteById(1L);

//        批量新增
       /* List<Goods> list = new
ArrayList<>();
        list.add(new Goods(1L, "小米手机7", "手机", "小米",
3299.00,"http://image.leyou.com/13123.jpg"));
        list.add(new Goods(2L, "坚果手机R1", "手机", "锤子",
3699.00,"http://image.leyou.com/13123.jpg"));
        list.add(new Goods(3L, "华为META10", "手机", "华为",
4499.00,"http://image.leyou.com/13123.jpg"));
        list.add(new Goods(4L, "小米Mix2S", "手机", "小米",
4299.00,"http://image.leyou.com/13123.jpg"));
        list.add(new Goods(5L, "荣耀V10", "手机", "华为",
2799.00,"http://image.leyou.com/13123.jpg"));

goodsRespository.saveAll(list);*/

1.7    
查询

1.7.1   goodsRespository自带的查询

//       
Iterable<Goods> goodsList = goodsRespository.findAll();  //查询所有
//        Iterable<Goods> goodsList
= goodsRespository.findAll(Sort.by(Sort.Direction.ASC,"price")); //排序
        Iterable<Goods>
goodsList = goodsRespository.findAll(PageRequest.of(0,3));  //分页 page页码是从0开始代表第一页 size  5
        for (Goods goods : goodsList) {
            System.out.println(goods);
        }

1.7.2   自定义查询方法

可以在接口中根据规定定义一些方法就可以直接使用

public interface GoodsRespository  extends ElasticsearchRepository<Goods,Long>{

public List<Goods>
findByTitle(String title);

public List<Goods>
findByBrand(String brand);

public List<Goods>
findByTitleOrBrand(String title,String brand);

public List<Goods>
findByPriceBetween(Double low,Double high);

public List<Goods>
findByBrandAndCategoryAndPriceBetween(String title,String categoty,Double
low,Double high);

}

使用:

//        List<Goods> goodsList =
goodsRespository.findByTitle("
手机");
       
List<Goods>
goodsList = goodsRespository.findByBrandAndCategoryAndPriceBetween("小米","手机",4000.0,5000.0);
        for (Goods
goods : goodsList) {
            System.out.println(goods);
        }

1.8    
SpringDataElasticSearch结合原生api查询

1、结合native查询

@Test
    public void testQuery(){

NativeSearchQueryBuilder
nativeSearchQueryBuilder = new NativeSearchQueryBuilder();
       
nativeSearchQueryBuilder.withQuery(QueryBuilders.termQuery("title", "小米"));
//       
nativeSearchQueryBuilder.withQuery(QueryBuilders.matchAllQuery());
//       
nativeSearchQueryBuilder.withPageable(PageRequest.of(0,3,Sort.by(Sort.Direction.DESC,"price")));

nativeSearchQueryBuilder.addAggregation(AggregationBuilders.terms("brandAvg").field("brand"));

AggregatedPage<Goods> aggregatedPage
= elasticsearchTemplate.queryForPage(nativeSearchQueryBuilder.build(),
Goods.class,new
GoodsHighLightResultMapper());

Aggregations aggregations =
aggregatedPage.getAggregations();
        Terms terms = aggregations.get("brandAvg");
        List<? extends Terms.Bucket> buckets = terms.getBuckets();
        for (Terms.Bucket
bucket : buckets) {
            System.out.println(bucket.getKeyAsString()+bucket.getDocCount());
        }

List<Goods> content =
aggregatedPage.getContent();
        for (Goods
goods : content) {
            System.out.println(goods);
        }

}

2、自己处理高亮

需要自定一个用来处理高亮的实现类

class GoodsHighLightResultMapper implements SearchResultMapper{
        @Override
        public <T> AggregatedPage<T> mapResults(SearchResponse
searchResponse, Class<T> aClass, Pageable pageable) {
            List<T> content = new ArrayList<>();
            Aggregations aggregations =
searchResponse.getAggregations();
            String scrollId =
searchResponse.getScrollId();
            SearchHits searchHits =
searchResponse.getHits();
            long total
= searchHits.getTotalHits();
            float maxScore
= searchHits.getMaxScore();
            for (SearchHit
searchHit : searchHits) {
                String sourceAsString =
searchHit.getSourceAsString();
                T t =
JSON.parseObject(sourceAsString, aClass);

Map<String,
HighlightField> highlightFields = searchHit.getHighlightFields();
                HighlightField
highlightField = highlightFields.get("title");
                String title =
highlightField.getFragments()[0].toString();
                try {
                    BeanUtils.setProperty(t,"title",title);
                } catch (Exception e) {
                    e.printStackTrace();
                }

content.add(t);
            }

return new AggregatedPageImpl<T>(content,pageable,total,aggregations,scrollId,maxScore);
//            List<T> content, Pageable
pageable, long total, Aggregations aggregations, String scrollId, float
maxScore
       
}
    }

3、使用

ELK-全文检索技术-elasticsearch集群及sde_restful的更多相关文章

  1. 日志分析平台ELK之搜索引擎Elasticsearch集群

    一.简介 什么是ELK?ELK是Elasticsearch.Logstash.Kibana这三个软件的首字母缩写:其中elasticsearch是用来做数据的存储和搜索的搜索引擎:logstash是数 ...

  2. ELK 中的elasticsearch 集群的部署

    本文内容 背景 ES集群中第一个master节点 ES slave节点 本文总结 Elasticsearch(以下简称ES)搭建集群的经验.以 Elasticsearch-rtf-2.2.1 版本为例 ...

  3. Centos8 部署 ElasticSearch 集群并搭建 ELK,基于Logstash同步MySQL数据到ElasticSearch

    Centos8安装Docker 1.更新一下yum [root@VM-24-9-centos ~]# yum -y update 2.安装containerd.io # centos8默认使用podm ...

  4. Centos8 Docker部署ElasticSearch集群

    ELK部署 部署ElasticSearch集群 1.拉取镜像及批量生成配置文件 # 拉取镜像 [root@VM-24-9-centos ~]# docker pull elasticsearch:7. ...

  5. ELK 性能(3) — 在 Docker 上运行高性能容错的 Elasticsearch 集群

    ELK 性能(3) - 在 Docker 上运行高性能容错的 Elasticsearch 集群 介绍 在 Docker 上运行高性能容错的 Elasticsearch 集群 内容 通常熟悉的开发流程是 ...

  6. ELK 性能(2) — 如何在大业务量下保持 Elasticsearch 集群的稳定

    ELK 性能(2) - 如何在大业务量下保持 Elasticsearch 集群的稳定 介绍 如何在大业务量下保持 Elasticsearch 集群的稳定? 内容 当我们使用 Elasticsearch ...

  7. ELK 性能(4) — 大规模 Elasticsearch 集群性能的最佳实践

    ELK 性能(4) - 大规模 Elasticsearch 集群性能的最佳实践 介绍 集群规模 集群数:6 整体集群规模: 300 Elasticsearch 实例 141 物理服务器 4200 CP ...

  8. 【ELK】【docker】6.Elasticsearch 集群启动多节点 + 解决ES节点集群状态为yellow

    本章其实是ELK第二章的插入章节. 本章ES集群的多节点是docker启动在同一个虚拟机上 ====================================================== ...

  9. 01篇ELK日志系统——升级版集群之elasticsearch集群的搭建

    [ 前言:以前搭了个简单的ELK日志系统,以我个人的感觉来说,ELK日志系统还是非常好用的.以前没有弄这个ELK日志系统的时候,线上的项目出了bug,报错了,要定位错误是什么,错误出现在哪个java代 ...

随机推荐

  1. python build-in function

    目录(?)[-] absx alliterable anyiterable basestring binx boolx callableobject chri classmethodfunction ...

  2. go语言系列--golang在windows上的安装和开发环境goland的配置

    在windows上安装golang软件 golang中国网址为:https://studygolang.com/dl 我的学习选择版本:1.12.5 golang 1.12.5版本更新的内容:gola ...

  3. pycharm 安装激活

    下载pycharm :http://www.jetbrains.com/pycharm/download/download 安装 直到 finish 下载补丁jetbrains-agent.jar并添 ...

  4. 使用mybatis-generator-core-1.3.2.jar根据数据库表自动生成实体

    1 导入mybatis-generator-core-1.3.2.jar 2配置mbg.xml <?xml version="1.0" encoding="UTF- ...

  5. 自动化运维--ansible(2)

    问题一:如何在多台服务器中配置Web项目上线的所有环境 解答: 1.使用ansible配置nginx服务 在安装前了解rpm与yum的区别  rpm是压缩包安装依赖包需要自己手动安装,yum安装解决依 ...

  6. 软件-客户端管理工具-SourceTree-帮助:免费Git客户端:sourcetree详细介绍

    ylbtech-软件-客户端管理工具-SourceTree-帮助:免费Git客户端:sourcetree详细介绍 1.返回顶部 1. 一.简介:一个用于Windows和Mac的免费Git客户端.Sou ...

  7. babel-node 和 nodemon

    概述 今天我继续完善我做的用来 mock 前端数据的库:ym-mock. 我想要实现 2 个需求: 支持 es6,至少要能 import 吧. 修改了代码之后能自动热更新,不能我修改了服务器代码要手动 ...

  8. eclipse下 hibernate逆向数据库操作示例!!

    做项目必然要先进行数据库表设计,然后根据数据库设计建立实体类(VO),这是理所当然的,但是到公司里做项目后,让我认识到,没有说既进行完数据库设计后还要再“自己”建立一变VO.意思是,在项目设计时,要么 ...

  9. PC、APP、H5三端测试的相同与不同

    随着手机应用的不断状态,同一款产品的移动端应用市场占相较PC端也越来越大,那么app与PC端针对这些产品的测试有什么相同与不同之处呢?笔者总结如下: 首先谈一谈相同之处... 一,针对同一个系统功能的 ...

  10. Selenium学习之==>WebDriver驱动对照表

    转自www.imdsx.cn 1.Chrome 对于chrome浏览器,有时候会有闪退的情况,也许是版本冲突的问题,我们要对照着这个表来对照查看是不是webdriver和chrome版本不对. chr ...