问题描述

将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。

均方差 ,其中平均值 ,x i为第i块矩形棋盘的总分。

请编程对给出的棋盘及n,求出O'的最小值。

输入格式

第1行为一个整数n(1 < n < 15)。

第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。

输出格式

仅一个数,为O'(四舍五入精确到小数点后三位)。

样例输入输出

样例输入

3

1 1 1 1 1 1 1 3

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 3

样例输出

1.633

解析

首先,我们需要将均方差的公式进行一定的变形,方便进行动态规划。公式变形如下:

\[\begin{align}
\sigma &= \sqrt{\frac{\sum_{i=1}^n{(x_i-\overline{x})^2}}{n}}\\
&= \sqrt{\frac{\sum_{i=1}^n{(x_i^2-2x_i\overline{x}+\overline{x}^2)}}{n}}\\
&= \sqrt{\frac{\sum_{i=1}^n{x_i^2}-2\overline{x}\sum_{i=1}^nx_i+n\overline{x}}{n}}\\
&= \sqrt{\frac{\sum_{i=1}^n{x_i^2}}{n}-\overline{x}^2}
\end{align}
\]

那么,现在只与每个矩形的元素和的平方有关。矩阵的和可以用二位前缀和的方式来解决,下面的关键是如何用动态规划的方式解决这个问题。想要描述一个状态,显然需要知道当前剩余矩形的位置。另外,由于受切割次数的限制,还需要记录这个矩形是割了几次后的结果。由此,我们有如下动态规划策略:

设\(f[i][j]][k][l][d]\)表示在切割了d次后剩余的矩形左上角为(i,j)、右上角为(k,l)时的最优解。那么转移时可以由题目要求,从各个方向进行转移。方程因为太长,在代码里注释。代码里将\(f[i][j][k][l][0]\)设为矩形元素和的平方。

代码

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int INF=1<<30;
int n, chess[9][9]={0}, sum[9][9]={0}, dp[9][9][9][9][15]={0};
//直接计算矩形(y1, x1)(y2, x2)矩形分数平方
int getX(int y1, int x1, int y2, int x2){
int a=sum[y2][x2]-sum[y2][x1-1]-sum[y1-1][x2]+sum[y1-1][x1-1];
return a*a;
}
int main(){
scanf("%d", &n);
//统一i表示y,j表示x
for(int i=1;i<=8;i++)
for(int j=1;j<=8;j++)
scanf("%d", &chess[i][j]);
//计算sum数组(矩形(1, 1)(i, j)的分数和),方便直接计算getX
for(int i=1;i<=8;i++){
for(int j=1;j<=8;j++)
sum[i][j]=sum[i][j-1]+chess[i][j];
for(int j=1;j<=8;j++)
sum[i][j]+=sum[i-1][j];
}
//初值
for(int i1=1;i1<=8;i1++)
for(int j1=1;j1<=8;j1++)
for(int i2=i1;i2<=8;i2++)
for(int j2=j1;j2<=8;j2++)
dp[i1][j1][i2][j2][0]=getX(i1, j1, i2, j2);
//这里的i是切割数(分析里的d)
for(int i=1;i<n;i++)
for(int i1=1;i1<=8;i1++)
for(int j1=1;j1<=8;j1++)
for(int i2=i1;i2<=8;i2++)
for(int j2=j1;j2<=8;j2++){
//赋值INF,若状态不合法不会干扰其他状态
dp[i1][j1][i2][j2][i]=INF;
//左右切割
for(int k=j1;k<j2;k++)
dp[i1][j1][i2][j2][i]=min(dp[i1][j1][i2][j2][i], min(dp[i1][j1][i2][k][i-1]+dp[i1][k+1][i2][j2][0], dp[i1][j1][i2][k][0]+dp[i1][k+1][i2][j2][i-1]));
//上下切割
for(int k=i1;k<i2;k++)
dp[i1][j1][i2][j2][i]=min(dp[i1][j1][i2][j2][i], min(dp[i1][j1][k][j2][i-1]+dp[k+1][j1][i2][j2][0], dp[i1][j1][k][j2][0]+dp[k+1][j1][i2][j2][i-1]));
}
//套公式
printf("%.3f\n", sqrt(double(dp[1][1][8][8][n-1])/n-double(sum[8][8]*sum[8][8])/n/n));
return 0;
}

[POJ 1911] 棋盘的更多相关文章

  1. POJ 1321 棋盘问题 --- DFS

    POJ 1321 题目大意:给定一棋盘,在其棋盘区域放置棋子,需保证每行每列都只有一颗棋子. (注意 .不可放 #可放) 解题思路:利用DFS,从第一行开始依次往下遍历,列是否已经放置棋子用一个数组标 ...

  2. HDU 2517 / POJ 1191 棋盘分割 区间DP / 记忆化搜索

    题目链接: 黑书 P116 HDU 2157 棋盘分割 POJ 1191 棋盘分割 分析:  枚举所有可能的切割方法. 但如果用递归的方法要加上记忆搜索, 不能会超时... 代码: #include& ...

  3. POJ 1191 棋盘分割 【DFS记忆化搜索经典】

    题目传送门:http://poj.org/problem?id=1191 棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  4. DFS POJ 1321 棋盘问题

    题目传送门 /* DFS:因为一行或一列都只放一个,可以枚举从哪一行开始放,DFS放棋子,同一列只能有一个 */ #include <cstdio> #include <algori ...

  5. POJ 1321 棋盘问题(C)回溯

    Emmm,我又来 POJ 了,这题感觉比上次做的简单点.类似皇后问题.但是稍微做了一点变形,比如棋子数量是不定的.棋盘形状不在是方形等等. 题目链接:POJ 1321 棋盘问题 解题思路 基本思路:从 ...

  6. OpenJudge/Poj 1321 棋盘问题

    1.链接地址: http://bailian.openjudge.cn/practice/1321 http://poj.org/problem?id=1321 2.题目: 棋盘问题 Time Lim ...

  7. OpenJudge/Poj 1191 棋盘分割

    1.链接地址: http://bailian.openjudge.cn/practice/1191/ http://poj.org/problem?id=1191 2.题目: 总时间限制: 1000m ...

  8. POJ 1321 棋盘问题(DFS板子题,简单搜索练习)

    棋盘问题 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44012   Accepted: 21375 Descriptio ...

  9. POJ 1321 - 棋盘问题 - [经典DFS]

    题目链接:http://poj.org/problem?id=1321 Time Limit: 1000MS Memory Limit: 10000K Description 在一个给定形状的棋盘(形 ...

随机推荐

  1. Vue引入Jquery和Bootstrap

    一.引入jquery包 npm i jquery 二.配置jquery 在webpack.base.conf.js中加载juery插件  所以要配置该文件 三.引入Bootstrap npm i bo ...

  2. SpringMvc @ModelAttribute 的用法

    参考:Spring 3.x 企业应用开发实战   第15章:SpringMvc  页码:532 ModelAttribute 从字面上解释就是模型的属性. 对于MVC框架来说是模型数据是最重要的,因为 ...

  3. C# datatable 导出到Excel

    datatable导出到Excel /// <summary> /// 将DataTable导出为Excel文件(.xls) /// </summary> /// <pa ...

  4. C++笔记(6)——关于OJ的单点测试和多点测试

    单点测试 PAT使用的就是单点测试(LeetCode应该也是单点测试).单点测试中系统会判断每组数据的输出结果是否正确,正确则通过测试并获得这则测试的分值.题目的总得分等于通过的数据的分值之和. 代码 ...

  5. TypeScript + Webpack 环境搭建

    TypeScript + Webpack 环境搭建步骤 安装Node.js 安装npm 创建一个npm项目 安装typescript,配置ts 安装webpack,配置webpack 初始化一个npm ...

  6. Lowest Common Ancestor of a Binary Tree(二叉树公共祖先)

    来源:https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree Given a binary tree, find t ...

  7. Nacos 配置中心原理分析

    我们从原生SDK代码中入手,可以发现最核心的两行代码: ConfigService configService=); 首先我们先来看 NacosFactory.createConfigService ...

  8. docker pull使用 代理

    [root@fdfs- ~]# cat /usr/lib/systemd/system/docker.service [Unit] Description=Docker Application Con ...

  9. sql server 中 like 中文不匹配问题

    原文:https://blog.csdn.net/miao0967020148/article/details/71108056 MS-SQL Server select * from Book wh ...

  10. axios动态数据的获取

    跨域:前端处理.后端处理 前端方法:代理 后端加header    第一步:全局安装axios cnpm install axios --save-dev        第二步: methods:{ ...