Problem Description
A little frog named Fog is on his way home. The path's length is N (1 <= N <= 100), and there are many insects along the way. Suppose the
original coordinate of Fog is 0. Fog can stay still or jump forward T units, A <= T <= B. Fog will eat up all the insects wherever he stays, but he will
get tired after K jumps and can not jump any more. The number of insects (always less than 10000) in each position of the path is given.
How many insects can Fog eat at most?
Note that Fog can only jump within the range [0, N), and whenever he jumps, his coordinate increases.

Input
The input consists of several test cases.
The first line contains an integer T indicating the number of test cases.
For each test case:
The first line contains four integers N, A, B(1 <= A <= B <= N), K (K >= 1).
The next line contains N integers, describing the number of insects in each position of the path.

Output
each test case:
Output one line containing an integer - the maximal number of insects that Fog can eat.

Sample Input
1
4 1 2 2
1 2 3 4

Sample Output
8

无脑的dpAC代码:

include

include

using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
int N,A,B,K;
cin>>N>>A>>B>>K;
int a[120]={0};
for(int i=0;i<N;i++)
cin>>a[i];
int dp[120][120]; //dp[i][k]表示在第i+1个位置的第k次跳后的最大值
memset(dp,-1,sizeof(dp));
dp[0][0]=a[0];
for(int i=0;i<N;i++)
{
for(int j=A;j<=B;j++)
{
for(int k=0;k<=max(K,101);k++)
{
if(dp[i][k]!=-1&&i+j<N) dp[i+j][k+1]=max(dp[i][k]+a[i+j],dp[i+j][k+1]);
else continue;
}
}
}
int max1=0;
for(int i=0;i<N;i++)
{
for(int j=1;j<=K;j++)
{
if(dp[i][j]>max1) max1=dp[i][j];
}
}
cout<<max1<<endl;
}
return 0;
}

但凡使用dp的,稍微有点难度的基本都会用到max()

hdu2182Frog(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. Tunnel Warfare HDU 1540 区间合并+最大最小值

    Tunnel Warfare HDU 1540 区间合并+最大最小值 题意 D x是破坏这个点,Q x是表示查询以x所在的最长的连续的点的个数,R是恢复上一次破坏的点. 题解思路 参考的大佬博客 这里 ...

  2. Codeforces 979D (STL set)(不用Trie简单AC)

    题面: 传送门 题目大意: 给定一个空集合,有两种操作: 一种是往集合中插入一个元素x,一种是给三个数x,k,s,问集合中是否存在v,使得gcd(x,v)%k==0,且x+v<=s若存在多个满足 ...

  3. AtCoder Beginner Contest 133-C - Remainder Minimization 2019

    https://atcoder.jp/contests/abc133/tasks/abc133_c 思路:由于L,R区间太大,所以不能暴力枚举.由于求(i*j)%2019的最小值,那么2019的倍数对 ...

  4. A*(A_star)搜索总结

    \(A^*(A star)\)搜索总结 标签:算法--搜索 阅读体验:https://zybuluo.com/Junlier/note/1299772 定义 先复制一则定义 \(A^*\)算法在人工智 ...

  5. 魔板 (bfs+康托展开)

    # 10027. 「一本通 1.4 例 2」魔板 [题目描述] Rubik 先生在发明了风靡全球魔方之后,又发明了它的二维版本--魔板.这是一张有 888 个大小相同的格子的魔板: 1 2 3 4 8 ...

  6. MySQL5.7 慢查询+DDL操作堵塞查询

    数据库版本: mysql> select @@version; +------------+ | @@version | +------------+ | 5.7.26-log | +----- ...

  7. fanc委托在项目中使用

    一,上代码 using System; namespace FuncDemo { class Program { static void Main(string[] args) { //无参数的fan ...

  8. 在Linux上下载和安装AAC音频编码器FAAC

    Linux上FAAC的安装 安装 下载 http://downloads.sourceforge.net/faac/faac-1.28.tar.gz 解压 tar zxvf faac-1.28.tar ...

  9. 前端开发HTML&css入门——盒子模型以及部分CSS样式

    CSS处理网页时,它认为每个元素都包含在一个不可见的盒子里.• 为什么要想象成盒子呢?因为如果把所有的元素都想象成盒子,那么我们对网页的布局就相当于是摆放盒子.• 我们只需要将相应的盒子摆放到网页中相 ...

  10. 学Python的第七天

    今天学习DBA有点乏,所以Python学的不是很多熬!!! 但是不管多苦多累Python不会放弃!! 虽然我是运维! #!/usr/bin/env python3 # -*- coding:utf-8 ...