Networking

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 19674   Accepted: 10061

Description

You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible routes for the cables that may connect pairs of points. For each possible route between two points, you are given the length of the cable that is needed to connect the points over that route. Note that there may exist many possible routes between two given points. It is assumed that the given possible routes connect (directly or indirectly) each two points in the area. 
Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.

Input

The input file consists of a number of data sets. Each data set defines one required network. The first line of the set contains two integers: the first defines the number P of the given points, and the second the number R of given routes between the points. The following R lines define the given routes between the points, each giving three integer numbers: the first two numbers identify the points, and the third gives the length of the route. The numbers are separated with white spaces. A data set giving only one number P=0 denotes the end of the input. The data sets are separated with an empty line. 
The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i. 

Output

For each data set, print one number on a separate line that gives the total length of the cable used for the entire designed network.

Sample Input

1 0

2 3
1 2 37
2 1 17
1 2 68 3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32 5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12 0

Sample Output

0
17
16
26

Source

 
本题思路:最小生成树模版题,所以这就用了三种方法来练习自己的模版能力。
 
Kruskal算法参考代码:
 #include <cstdio>
#include <algorithm>
using namespace std; const int maxp = + , maxr = * / + ;
int p, r, ans, head[maxp], Rank[maxp];
struct Edge {
int u, v, w;
}edge[maxr]; void Make_Set() {
for(int i = ; i <= p; i ++) {
head[i] = i;
Rank[i] = ;
}
ans = ;
} int Find(int u) {
if(u == head[u]) return u;
return head[u] = Find(head[u]);
} void Union(int u, int v) {
int fu = Find(u), fv = Find(v);
if(fu == fv) return;
if(Rank[fu] > Rank[fv])
head[fv] = fu;
else {
head[fu] = fv;
if(Rank[fu] == Rank[fv]) Rank[fv] += ;
}
} bool cmp(Edge a, Edge b) {
return a.w < b.w;
} bool Is_same(int u, int v) {
return Find(u) == Find(v);
} void Kruskal() {
sort(edge + , edge + r + , cmp);
int cnt = ;
Make_Set();
for(int i = ; i <= r; i ++) {
if(!Is_same(edge[i].u, edge[i].v)) {
cnt ++;
ans += edge[i].w;
Union(edge[i].u, edge[i].v);
}
if(cnt == p - ) return;
}
} int main () {
while(~scanf("%d", &p) && p) {
scanf("%d", &r);
for(int i = ; i <= r; i ++) {
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
}
Kruskal();
printf("%d\n", ans);
}
return ;
}

Prim + 邻接矩阵

 #include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int maxp = + , maxr = * / + , INF = 0x3f3f3f3f;
int p, r, ans, dist[maxp], G[maxp][maxp];
bool vis[maxp]; void Init() {
ans = ;
memset(vis ,false, sizeof vis);
for(int i = ; i <= p; i ++) {
for(int j = ; j <= p; j ++)
G[i][j] = INF;
}
} void prim(int source) {
dist[source] = ;
vis[source] = true;//初始状态下只有source为已经安装了network的点
for(int i = ; i <= p; i ++)
dist[i] = G[source][i];//初始化所有distance为source到他们的距离
for(int i = ; i <= p; i ++) {
int MIN = INF, k = -;
for(int j = ; j <= p; j ++) {//每次选择那个距离子最小生成树所有结点权值最小的结点,并将其连接Network
if(!vis[j] && MIN > dist[j]) {
k = j;
MIN = dist[j];
}
}
if(MIN == INF) return;//没找到就说明该此时已经没有可以探索的结点了
ans += MIN;
vis[k] = true;
for(int j = ; j <= p; j ++) {
if(!vis[j] && dist[j] > G[k][j])
dist[j] = G[k][j];//对于新增的结点k,动态更新最小生成树内结点到他们结点相邻的权值,很显然意思就是每新增一个结点就看是否此时会有一条更进的边可以到达j结点
}
}
} int main () {
int a, b, w;
while(~scanf("%d", &p) && p) {
scanf("%d", &r);
Init();
for(int i = ; i <= r; i ++) {
scanf("%d %d %d", &a, &b, &w);
if(w < G[a][b]) {//选择权值最小的那条边
G[a][b] = G[b][a] = w;
}
}
prim();
printf("%d\n", ans);
}
return ;
}

Prim + 最小堆优化 + 邻接表

这里堆是用STL优先队列实现的,我比较懒emm...(学了这么多需要堆优化的算法,结果现在连个最基本的堆都不会写,算法导论上说斐波纳挈堆优化的Prim超级快,所以打完国赛我会总结堆 + 斐波纳挈堆

还会更新出他们优化的算法)。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std; typedef pair <int, int> pii;
struct Edge {
int to, cost;
friend bool operator < (const Edge &a, const Edge &b) {
return a.cost > b.cost;
}
};
const int maxp = + , maxr = * / + , INF = 0x3f3f3f3f;
int p, r, ans, dist[maxp];
bool vis[maxp];
vector <Edge> edge[maxp]; void addedge(int u, int v, int w) {
edge[u].push_back({v, w});
} void Queue_Prim(int source) {
memset(vis, false, sizeof vis);
for(int i = ; i <= p; i ++) dist[i] = INF;
dist[] = ans = ;
priority_queue <Edge> Q;
Q.push({source, dist[source]});
while(!Q.empty()) {
Edge now = Q.top();
Q.pop();
if(vis[now.to]) continue;
vis[now.to] = true;
ans += now.cost;
for(unsigned int i = ; i < edge[now.to].size(); i ++) {
int v = edge[now.to][i].to;
if(dist[v] > edge[now.to][i].cost) {
dist[v] = edge[now.to][i].cost;
Q.push({v, dist[v]});
}
}
}
} int main () {
int a, b, c;
while(~scanf("%d", &p) && p) {
scanf("%d", &r);
for(int i = ; i < r; i ++) {
scanf("%d %d %d", &a, &b, &c);
addedge(a, b, c);
addedge(b, a, c);
}
Queue_Prim();
for(int i = ; i <= p; i ++) edge[i].clear();
printf("%d\n", ans);
}
return ;
}

POJ-1287.Network(Kruskal + Prim + Prim堆优化)的更多相关文章

  1. 求最小生成树(暴力法,prim,prim的堆优化,kruskal)

    求最小生成树(暴力法,prim,prim的堆优化,kruskal) 5 71 2 22 5 21 3 41 4 73 4 12 3 13 5 6 我们采用的是dfs的回溯暴力,所以对于如下图,只能搜索 ...

  2. Prim算法堆优化

    #include <stdio.h> #include <string.h> #include <stdlib.h> #include <ctype.h> ...

  3. hiho一下 第二十九周 最小生成树三·堆优化的Prim算法【14年寒假弄了好长时间没搞懂的prim优化:prim算法+堆优化 】

    题目1 : 最小生成树三·堆优化的Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 回到两个星期之前,在成功的使用Kruscal算法解决了问题之后,小Ho产生 ...

  4. Electrification Plan 最小生成树(prim+krusl+堆优化prim)

    题目 题意: 无向图,给n个城市,n*n条边,每条边都有一个权值 代表修路的代价,其中有k个点有发电站,给出这k个点的编号,要每一个城市都连到发电站,问最小的修路代价. 思路: prim:把发电站之间 ...

  5. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  6. POJ 1861 Network (Kruskal求MST模板题)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14103   Accepted: 5528   Specia ...

  7. 图论之堆优化的Prim

    本题模板,最小生成树,洛谷P3366 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边 ...

  8. 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较

    最小生成树: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.简单来说就是有且仅有n个点n-1条边的连通图. 而最小生成树就是最小权 ...

  9. 在 Prim 算法中使用 pb_ds 堆优化

    在 Prim 算法中使用 pb_ds 堆优化 Prim 算法用于求最小生成树(Minimum Spanning Tree,简称 MST),其本质是一种贪心的加点法.对于一个各点相互连通的无向图而言,P ...

随机推荐

  1. 【学习总结】SQL学习总结

    参考链接: 菜鸟教程: 一.认识sql 二.sql语法 三.sql高级教程 四.sql函数 一.认识SQL SQL是什么? SQL 是用于访问和处理数据库的标准的计算机语言. SQL,指结构化查询语言 ...

  2. JVM内存模型及参数调优

    堆.栈.方法区概念区别 1.堆 堆内存用于存放由new创建的对象和数组.在堆中分配的内存,由java虚拟机自动垃圾回收器来管理.根据垃圾回收机制的不同, Java堆有可能拥有不同的结构,最为常见的就是 ...

  3. Ubuntu Anaconda3 环境下安装caffe

    安装Python环境 本人环境为Anaconda3 ,可参照 https://blog.csdn.net/ctwy291314/article/details/86571198 完成安装Python2 ...

  4. layui隐藏表格列

    根据需求我们需要展示某些数据,但有的时候这些数据又不该展示出来,比如不同角色看到不同数据,这个时候就会需要隐藏些数据了 我们需要在表格完成的回调进行处理 done: function (res, cu ...

  5. Java虚拟机——Class类文件结构

    Class文件格式采用一种类似C语言结构体的结构来存储数据,这种数据结构只有两种数据类型:无符号数和表.      无符号数属于基本的数据类型,数据项的不同长度分别用u1, u2, u4, u8表示, ...

  6. kafka docker-composer.yml

    使用Docker快速搭建Kafka开发环境 表现力 关注  0.5 2018.05.04 03:00* 字数 740 阅读 25240评论 1喜欢 11 Docker在很多时候都可以帮助我们快速搭建想 ...

  7. [洛谷P3205] HNOI2010 合唱队

    问题描述 为了在即将到来的晚会上有更好的演出效果,作为AAA合唱队负责人的小A需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共N个人,第i个人的身高为Hi米(1000<=Hi<= ...

  8. 阿里云Kubernetes服务 - Service Broker快速入门指南

    4月底阿里云容器服务上线了基于Kubernetes集群的服务目录功能.阿里云的容器的服务目录遵循Open Service Broker API标准,提供了一系列的服务代理组件,实现了对主流开源服务如M ...

  9. Python3解leetcode Reach a Number

    问题描述: You are standing at position 0 on an infinite number line. There is a goal at position target. ...

  10. php中ajax的使用实例讲解

    一.总结 1.多复习:代码都挺简单的,就是需要复习,要多看 2.ajax原理:ajax就是部分更新页面,其实还在的html页面监听到事件后,然后传给服务器进行操作,这里用的是get方式来传值到服务器, ...