POJ-1287.Network(Kruskal + Prim + Prim堆优化)
Networking
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 19674 | Accepted: 10061 |
Description
Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.
Input
The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i.
Output
Sample Input
1 0 2 3
1 2 37
2 1 17
1 2 68 3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32 5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12 0
Sample Output
0
17
16
26
Source
#include <cstdio>
#include <algorithm>
using namespace std; const int maxp = + , maxr = * / + ;
int p, r, ans, head[maxp], Rank[maxp];
struct Edge {
int u, v, w;
}edge[maxr]; void Make_Set() {
for(int i = ; i <= p; i ++) {
head[i] = i;
Rank[i] = ;
}
ans = ;
} int Find(int u) {
if(u == head[u]) return u;
return head[u] = Find(head[u]);
} void Union(int u, int v) {
int fu = Find(u), fv = Find(v);
if(fu == fv) return;
if(Rank[fu] > Rank[fv])
head[fv] = fu;
else {
head[fu] = fv;
if(Rank[fu] == Rank[fv]) Rank[fv] += ;
}
} bool cmp(Edge a, Edge b) {
return a.w < b.w;
} bool Is_same(int u, int v) {
return Find(u) == Find(v);
} void Kruskal() {
sort(edge + , edge + r + , cmp);
int cnt = ;
Make_Set();
for(int i = ; i <= r; i ++) {
if(!Is_same(edge[i].u, edge[i].v)) {
cnt ++;
ans += edge[i].w;
Union(edge[i].u, edge[i].v);
}
if(cnt == p - ) return;
}
} int main () {
while(~scanf("%d", &p) && p) {
scanf("%d", &r);
for(int i = ; i <= r; i ++) {
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].w);
}
Kruskal();
printf("%d\n", ans);
}
return ;
}
Prim + 邻接矩阵
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std; const int maxp = + , maxr = * / + , INF = 0x3f3f3f3f;
int p, r, ans, dist[maxp], G[maxp][maxp];
bool vis[maxp]; void Init() {
ans = ;
memset(vis ,false, sizeof vis);
for(int i = ; i <= p; i ++) {
for(int j = ; j <= p; j ++)
G[i][j] = INF;
}
} void prim(int source) {
dist[source] = ;
vis[source] = true;//初始状态下只有source为已经安装了network的点
for(int i = ; i <= p; i ++)
dist[i] = G[source][i];//初始化所有distance为source到他们的距离
for(int i = ; i <= p; i ++) {
int MIN = INF, k = -;
for(int j = ; j <= p; j ++) {//每次选择那个距离子最小生成树所有结点权值最小的结点,并将其连接Network
if(!vis[j] && MIN > dist[j]) {
k = j;
MIN = dist[j];
}
}
if(MIN == INF) return;//没找到就说明该此时已经没有可以探索的结点了
ans += MIN;
vis[k] = true;
for(int j = ; j <= p; j ++) {
if(!vis[j] && dist[j] > G[k][j])
dist[j] = G[k][j];//对于新增的结点k,动态更新最小生成树内结点到他们结点相邻的权值,很显然意思就是每新增一个结点就看是否此时会有一条更进的边可以到达j结点
}
}
} int main () {
int a, b, w;
while(~scanf("%d", &p) && p) {
scanf("%d", &r);
Init();
for(int i = ; i <= r; i ++) {
scanf("%d %d %d", &a, &b, &w);
if(w < G[a][b]) {//选择权值最小的那条边
G[a][b] = G[b][a] = w;
}
}
prim();
printf("%d\n", ans);
}
return ;
}
Prim + 最小堆优化 + 邻接表
这里堆是用STL优先队列实现的,我比较懒emm...(学了这么多需要堆优化的算法,结果现在连个最基本的堆都不会写,算法导论上说斐波纳挈堆优化的Prim超级快,所以打完国赛我会总结堆 + 斐波纳挈堆
还会更新出他们优化的算法)。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std; typedef pair <int, int> pii;
struct Edge {
int to, cost;
friend bool operator < (const Edge &a, const Edge &b) {
return a.cost > b.cost;
}
};
const int maxp = + , maxr = * / + , INF = 0x3f3f3f3f;
int p, r, ans, dist[maxp];
bool vis[maxp];
vector <Edge> edge[maxp]; void addedge(int u, int v, int w) {
edge[u].push_back({v, w});
} void Queue_Prim(int source) {
memset(vis, false, sizeof vis);
for(int i = ; i <= p; i ++) dist[i] = INF;
dist[] = ans = ;
priority_queue <Edge> Q;
Q.push({source, dist[source]});
while(!Q.empty()) {
Edge now = Q.top();
Q.pop();
if(vis[now.to]) continue;
vis[now.to] = true;
ans += now.cost;
for(unsigned int i = ; i < edge[now.to].size(); i ++) {
int v = edge[now.to][i].to;
if(dist[v] > edge[now.to][i].cost) {
dist[v] = edge[now.to][i].cost;
Q.push({v, dist[v]});
}
}
}
} int main () {
int a, b, c;
while(~scanf("%d", &p) && p) {
scanf("%d", &r);
for(int i = ; i < r; i ++) {
scanf("%d %d %d", &a, &b, &c);
addedge(a, b, c);
addedge(b, a, c);
}
Queue_Prim();
for(int i = ; i <= p; i ++) edge[i].clear();
printf("%d\n", ans);
}
return ;
}
POJ-1287.Network(Kruskal + Prim + Prim堆优化)的更多相关文章
- 求最小生成树(暴力法,prim,prim的堆优化,kruskal)
求最小生成树(暴力法,prim,prim的堆优化,kruskal) 5 71 2 22 5 21 3 41 4 73 4 12 3 13 5 6 我们采用的是dfs的回溯暴力,所以对于如下图,只能搜索 ...
- Prim算法堆优化
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <ctype.h> ...
- hiho一下 第二十九周 最小生成树三·堆优化的Prim算法【14年寒假弄了好长时间没搞懂的prim优化:prim算法+堆优化 】
题目1 : 最小生成树三·堆优化的Prim算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 回到两个星期之前,在成功的使用Kruscal算法解决了问题之后,小Ho产生 ...
- Electrification Plan 最小生成树(prim+krusl+堆优化prim)
题目 题意: 无向图,给n个城市,n*n条边,每条边都有一个权值 代表修路的代价,其中有k个点有发电站,给出这k个点的编号,要每一个城市都连到发电站,问最小的修路代价. 思路: prim:把发电站之间 ...
- POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)
Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14021 Accepted: 5484 Specia ...
- POJ 1861 Network (Kruskal求MST模板题)
Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14103 Accepted: 5528 Specia ...
- 图论之堆优化的Prim
本题模板,最小生成树,洛谷P3366 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边 ...
- 图论——最小生成树:Prim算法及优化、Kruskal算法,及时间复杂度比较
最小生成树: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边.简单来说就是有且仅有n个点n-1条边的连通图. 而最小生成树就是最小权 ...
- 在 Prim 算法中使用 pb_ds 堆优化
在 Prim 算法中使用 pb_ds 堆优化 Prim 算法用于求最小生成树(Minimum Spanning Tree,简称 MST),其本质是一种贪心的加点法.对于一个各点相互连通的无向图而言,P ...
随机推荐
- Ubuntu14 vsftp 的安装和虚拟用户配置
一.介绍 FTP 是 File Transfer Protocol (文件传输协议)的缩写 ,在 Unix/Linux 系统中常用的免费 FTP 服务器软件主要是 VSFTP,vsftp的官方地址:h ...
- 《快学scala》读书笔记(2)
第二章 控制结构和函数 1.条件表达式 (1)scala中if/else表达式有值,这个值就是跟在if或者else之后的表达式的值.如: if (x > 0) 1 else -1 这个表达式的 ...
- 云中沙箱学习笔记2-ECS之初体验
1.1 背景知识 云服务器(Elastic Compute Service, 简称ECS),是一种简单高效,处理能力可以弹性伸缩的计算服务.ECS的相关术语说明如下: --实例(Instance):是 ...
- postgres - 以单用户模式运行一个 PostgreSQL服务器
SYNOPSIS postgres [ -A 0 | 1] [ -B nbuffers] [ -c name=value] [ -d debug-level] [ --describe-config ...
- 利用C51单片机模拟SPI进行双机通信
SPI协议简述 SPI,是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口.由Motorola首创.SPI接口主要应用在 EEPROM,FLASH,实时时 ...
- js 一个不得不注意的浏览器兼容性问题 进制转换
写几行JS代码 var num = '022'; alert(num+' '+parseInt(num)+' '+parseInt(num,10)); 不同的浏览器将会得到不同的结果在谷歌浏览器下的结 ...
- Codeforces Round #425 (Div. 2) - B
题目链接:http://codeforces.com/contest/832/problem/B 题意:给定一个好字母集合(只有小写字母,除了这些外其余都是坏字母集合),给定一个匹配模式串, 模式串只 ...
- zabbix 4.2 安装教程
1.我这里使用的是ali的yum源 #wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7 ...
- 动态规划—distinct-subsequences
题目: Given a string S and a string T, count the number of distinct subsequences of T in S. A subseque ...
- centos 6.5 安装 dubbo 管理中心
从http://pan.baidu.com/s/1dDlI7aL下载dubbo-admin-2.5.4.war包,将下载的包放在tomcat的webapps目录,启动tomcat自动解压该war包,然 ...