[USACO12FEB]牛券Cow Coupons(堆,贪心)

题目描述

Farmer John needs new cows! There are N cows for sale (1 <= N <= 50,000), and FJ has to spend no more than his budget of M units of money (1 <= M <= 10^14). Cow i costs P_i money (1 <= P_i <= 10^9), but FJ has K coupons (1 <= K <= N), and when he uses a coupon on cow i, the cow costs C_i instead (1 <= C_i <= P_i). FJ can only use one coupon per cow, of course.

What is the maximum number of cows FJ can afford?

FJ准备买一些新奶牛,市场上有N头奶牛(1<=N<=50000),第i头奶牛价格为Pi(1<=Pi<=109)。FJ有K张优惠券,使用优惠券购买第i头奶牛时价格会降为Ci(1<=Ci<=Pi),每头奶牛只能使用一次优惠券。FJ想知道花不超过M(1<=M<=1014)的钱最多可以买多少奶牛?

输入输出格式

输入格式:

  • Line 1: Three space-separated integers: N, K, and M.

  • Lines 2..N+1: Line i+1 contains two integers: P_i and C_i.

输出格式:

  • Line 1: A single integer, the maximum number of cows FJ can afford.

输入输出样例

输入样例#1:

4 1 7

3 2

2 2

8 1

4 3

输出样例#1:

3

说明

FJ has 4 cows, 1 coupon, and a budget of 7.

FJ uses the coupon on cow 3 and buys cows 1, 2, and 3, for a total cost of 3 + 2 + 1 = 6.

堆模拟反悔操作

很容易发现直接贪心是错误的,因为我们有总钱数的限制。

那么我们可不可以通过调整假的贪心策略来获得正确答案呢?

先贪心地拿最小的k个优惠价,然后考虑怎么反悔。

对于两头牛\(i,j\),假设\(i\)用了优惠券,\(j\)没有用,什么情况下会使\(j\)用优惠券\(i\)不用更优呢?很简单:\(c[i]+p[j]>p[i]+c[j]\)。用一个堆维护用优惠券的牛,令一个堆维护还未选择的牛。每次考虑未选择的牛是用原价买还是“反悔”。

不过自己还有一个疑问,每次钱不够的时候就能够break掉了吗?感觉仔细思考了一下并不可以。希望能够解答

#include<bits/stdc++.h>
#define lll long long
using namespace std;
lll read(){
lll x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const lll N=50010;
lll n,k,m,ans;
bool vis[N];
struct node{
lll p,c,v;
}f[N];
priority_queue< pair<int,int> >q1,q2;
bool cmp(node p,node q){return p.c<q.c;}
int main(){
n=read();k=read();m=read();
for(lll i=1;i<=n;i++)f[i].p=read(),f[i].c=read(),f[i].v=f[i].p-f[i].c;
sort(f+1,f+1+n,cmp);
for(lll i=1;i<=k;i++){
if(m<f[i].c){cout<<i-1;return 0;}
m-=f[i].c;q1.push(make_pair(f[i].v,i));
}ans=k;
for(lll i=k+1;i<=n;i++)q2.push(make_pair(-f[i].p,i));
while(m&&ans!=n){
lll i=q2.top().second;q2.pop();
lll j=q1.top().second;q1.pop();
if(f[j].c+f[i].p>f[i].c+f[j].p){
if(m<f[j].v+f[i].c)break;
q1.push(make_pair(f[i].v,i));
m-=f[j].v+f[i].c;ans++;
}
else {
if(m<f[i].p)break;
q1.push(make_pair(f[j].v,j));
m-=f[i].p;ans++;
}
}cout<<ans<<endl;
}

[USACO12FEB]牛券Cow Coupons(堆,贪心)的更多相关文章

  1. 洛谷P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 71通过 248提交 题目提供者洛谷OnlineJudge 标签USACO2012云端 难度提高+/省选- 时空限制1s / 128MB ...

  2. P3045 [USACO12FEB]牛券Cow Coupons

    P3045 [USACO12FEB]牛券Cow Coupons 贪心题.先选中 \(c_i\) 最小的 \(k\) 头牛,如果这样就超过 \(m\) ,直接退出,输出答案.否则考虑把后面的牛依次加入, ...

  3. [USACO12FEB]牛券Cow Coupons

    嘟嘟嘟 这其实是一道贪心题,而不是dp. 首先我们贪心的取有优惠券中价值最小的,并把这些东西都放在优先队列里,然后看[k + 1, n]中,有些东西使用了优惠券减的价钱是否比[1, k]中用了优惠券的 ...

  4. LuoguP3045牛券Cow Coupons

    LuoguP3045 [USACO12FEB]牛券Cow Coupons 果然我贪心能力还是太差了 ZR讲过的原题我回来对做法没有一丁点印象 有时候有这样一种题目 每个数有两种不同的价值 你可以选择价 ...

  5. 牛券Cow Coupons

    USACO12FEB 久违的奶牛题. 题意: FJ准备买一些新奶牛,市场上有 $ N $ 头奶牛 $ (1 \leq N \leq 50000) $ ,第i头奶牛价格为 $ P_i (1 \leq P ...

  6. [Usaco 2012 Feb]Cow coupons牛券:反悔型贪心

    Description Farmer  John  needs  new  cows! There  are  N  cows  for  sale (1 <= N <= 50,000), ...

  7. [USACO 2012 Feb Gold] Cow Coupons【贪心 堆】

    传送门1:http://www.usaco.org/index.php?page=viewproblem2&cpid=118 传送门2:http://www.lydsy.com/JudgeOn ...

  8. [Usaco2012 Feb] Cow Coupons

    [Usaco2012 Feb] Cow Coupons 一个比较正确的贪心写法(跑得贼慢...) 首先我们二分答案,设当前答案为mid 将序列按照用券之后能省掉的多少排序,那么我们对于两种情况 \(m ...

  9. USACO 2012 Feb Cow Coupons

    2590: [Usaco2012 Feb]Cow Coupons Time Limit: 10 Sec Memory Limit: 128 MB Submit: 349 Solved: 181 [Su ...

随机推荐

  1. Point-wise Mutual Information

    Point-wise Mutual Information (Yao, et al 2019) reclaimed a clear description of Point-wise Mutual I ...

  2. Emacs Python 自动补全之 jedi

    jedi jedi 的安装配置并不是很友好.github 上也没有明确说明.查了很多资料, 最后才配置成功.可是效果却不是很理想.在补全的时候有明显的卡顿现象. 不知道网上这么多人对其推崇备至是因为什 ...

  3. mysqli实现增删改查(转)

    1.面向对象 在面向对象的方式中,mysqli被封装成一个类,它的构造方法如下: __construct ([ string $host [, string $username [, string $ ...

  4. Java编程思想—八皇后问题(数组法、堆栈法)

    Java编程思想-八皇后问题(数组法.堆栈法) 实验题目:回溯法实验(八皇后问题) 实验目的: 实验要求: 实验内容: (1)问题描述 (2)实验步骤: 数组法: 堆栈法: 算法伪代码: 实验结果: ...

  5. upd通讯Recvfrom设置阻塞不起作用

    把自己踩到的坑记录一下,在做UDP通讯的时候,发现自己的程序没有收数据居然也有百分之十二的cpu占用率,通过性能分析工具了解到时recvfrom函数一直在执行,虽然设置阻塞并且确认成功了, ;//阻塞 ...

  6. 7.接入类流程-PRACH优化

    PRACH优化 就是伪随机序列随机码(前导序列码).优化的目的就是减小码与码之间碰撞的 基站广播伪随机序列码(如64个),终端挑选一个发送.不同的用户使用同一个码就会产生碰撞.同频组网情况下,邻区的伪 ...

  7. 2019.8中关村、OGeek(oppo)比赛

    中关村writeup https://mp.weixin.qq.com/s?__biz=MzU3MzczNDg1OQ==&mid=2247484106&idx=1&sn=62a ...

  8. chrome插件--安装以及问题记录

    vue-devtools 插件网址下载 问题1 Vue.js is detected on this page. Devtools inspection is not available becaus ...

  9. Selenium+PhantomJs 爬取网页内容

    利用Selenium和PhantomJs 可以模拟用户操作,爬取大多数的网站.下面以新浪财经为例,我们抓取新浪财经的新闻版块内容. 1.依赖的jar包.我的项目是普通的SSM单间的WEB工程.最后一个 ...

  10. CAS导致的ABA问题及解决:时间戳原子引用AtomicReference、AtomicStampedReference

    1.CAS导致ABA问题: CAS算法实现一个重要前提需要取出内存中某时刻的数据并在当下时刻比较并交换,那么在这个时间差中会导致数据的变化. 比如:线程1从内存位置V中取出A,这时线程2也从V中取出A ...