Kosaraju算法 有向图的强连通分量
有向图的强连通分量即,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected
components)。
采用的算法是Kosaraju算法。
算法原理:对于图G,转置图(同图中的每边的方向相反)具有和原图完全一样的强连通分量。
具体实现:
1.对原图G进行深度优先遍历,记录每个节点的离开时间time[i]。
2.选择具有最晚离开时间的顶点,对反图GT进行遍历,删除能够遍历到的顶点,这些顶点构成一个强连通分量。
3.如果还有顶点没有删除,继续步骤2,否则算法结束。
贴一下看到的例图:
原图对图进行DFS
对
逆图进行DFS得强连通分量
主要代码:
intmap[511][511];
intnmap[511][511];
intvist[501];
stack<int>S;
intN;
intDFS1( intv ) /* vistthevnode */
{
vist[v] = 1;
for ( inti = 1; i <= N; i++ )
{
if ( !vist[i] && nmap[v][i] )
DFS1( i );
}
S.push( v );
return0;
}
intDFS2( intv )
{
vist[v] = 1;
for ( inti = 1; i <= N; i++ )
{
if ( !vist[i] && map[v][i] )
DFS2( i );
}
return0;
}
intkosaraju()
{
while ( !S.empty() )
S.pop();
memset( vist, 0, sizeof(vist) );
for ( inti = 1; i <= N; i++ )
{
if ( !vist[i] )
{
DFS1( i );
}
}
intt = 0;
memset( vist, 0, sizeof(vist) );
while ( !S.empty() )
{
intv = S.top();
S.pop();
printf( "|%d|", v );
if ( !vist[v] )
{
t++;
DFS2( v );
}
}
return t;
</int>}
Kosaraju算法 有向图的强连通分量的更多相关文章
- poj2186Popular Cows(Kosaraju算法--有向图的强连通分量的分解)
/* 题目大意:有N个cows, M个关系 a->b 表示 a认为b popular:如果还有b->c, 那么就会有a->c 问最终有多少个cows被其他所有cows认为是popul ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- 图论-求有向图的强连通分量(Kosaraju算法)
求有向图的强连通分量 Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...
- Tarjan算法初探 (1):Tarjan如何求有向图的强连通分量
在此大概讲一下初学Tarjan算法的领悟( QwQ) Tarjan算法 是图论的非常经典的算法 可以用来寻找有向图中的强连通分量 与此同时也可以通过寻找图中的强连通分量来进行缩点 首先给出强连通分量的 ...
- 【有向图】强连通分量-Tarjan算法
好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了) 所以今天要写的是一个高大上的东西:强连通 首先,是一些强连通相关的定义 //来自度娘 1.强连通图(Strongly Connected Grap ...
- Tarjan算法 求 有向图的强连通分量
百度百科 https://baike.baidu.com/item/tarjan%E7%AE%97%E6%B3%95/10687825?fr=aladdin 参考博文 http://blog.csdn ...
- [有向图的强连通分量][Tarjan算法]
https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...
- Tarjan算法求出强连通分量(包含若干个节点)
[功能] Tarjan算法的用途之一是,求一个有向图G=(V,E)里极大强连通分量.强连通分量是指有向图G里顶点间能互相到达的子图.而如果一个强连通分量已经没有被其它强通分量完全包含的话,那么这个强连 ...
- UVA247- Calling Circles(有向图的强连通分量)
题目链接 题意: 给定一张有向图.找出全部强连通分量,并输出. 思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式. 代码: #include <iostrea ...
随机推荐
- dd命令注意:dd:unrecognized operand 'if'
如果是 idd if=boot.bin 在等号两边不要有空格
- bzoj4883 [Lydsy1705月赛]棋盘上的守卫 最小生成基环树森林
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4883 题解 每一行和每一列都必须要被覆盖. 考虑对于每一行和每一列都建立一个点,一行和一列之间 ...
- Store generated project files externally
最近项目要从.net转java了,之前java语言就就用过,本着熟悉回顾的想法,决定自己用maven搭建一个基础的ssm框架,一些搭建完毕,程序也能正常运行了.最后对比了别人搭建好的源码,发现他们im ...
- iOS各别版本new Date().getTime 获取时间戳为null问题
正常逻辑 new Date('2019-9-8').getTime() 注意日期格式 yyyy--mm-dd 因为yyyy/mm/dd也有兼容性问题 但是各别iOS版本不支持 // IOS 获取时间戳 ...
- v-if 和 v-show
关于条件渲染 所谓条件渲染,就是根据不同的条件,使用不同的模板来生成 html. 在 Vue.js 中,使用 v-if 和 v-show 指令来控制条件渲染. 区别 v-show 会在app初始化的时 ...
- C++的命令行参数(gflag)
参考:https://www.cnblogs.com/myyan/p/4699940.html 这是一款google开源的命令行参数解析工具,支持从环境变量.配置文件读取参数(可以用gflags代替配 ...
- handy源码阅读(六):tcp类
首先是tcpconn和tcpserver类: struct TcpConn : public std::enable_shared_from_this<TcpConn>, private ...
- 原生js控制控制--弹窗的显示和隐藏
以防浪费大家的时间,还是先上效果图吧,满足您的需求就往下look吧. 重要知识点:点击其他地方,也就是除了小叉子之外的地方也能够关闭弹窗哦.代码已标红 html代码: <button id ...
- React Native 之SectionList
接上一篇: /pages/SectionListDemo.js import React, {Fragment,Component} from 'react'; import { SafeAreaVi ...
- MySQL两个时间相减
SELECT TIMESTAMPDIFF(MONTH,'2009-10-01','2009-09-01'); interval可是: SECOND 秒 SECONDS MINUTE 分钟 MINUTE ...