Paths and Trees

time limit per test3 seconds

memory limit per test256 megabytes

Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.

Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.

You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.

Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.

The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.

Output

In the first line print the minimum total weight of the edges of the tree.

In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.

If there are multiple answers, print any of them.

Examples

input

3 3

1 2 1

2 3 1

1 3 2

3

output

2

1 2

input

4 4

1 2 1

2 3 1

3 4 1

4 1 2

4

output

4

2 3 4

Note

In the first sample there are two possible shortest path trees:

with edges 1 – 3 and 2 – 3 (the total weight is 3);

with edges 1 – 2 and 2 – 3 (the total weight is 2);

And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.





题目大概意思就是给定 n 个点, m 条边的无向图和一个点 u,找出若干条边组成一个子图,要求这个子图中 u 到其他点的最短距离与在原图中的相等,并且要求子图所有边的权重和最小,求出最小值。

显然要先跑一次最短路。。。

然后你想一下对于一个点,只要有一条边从一个近一点的点能够转移过来构成他的最短路就够了。。。所以就贪心就好了,找一个最短的边保证可以就好了。。。


#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 5;
struct lpl{
int to, dis, num;
}lin;
struct ld{
int num;
long long dis;
}node[maxn];
vector<lpl> point[maxn];
int n, m, s;
long long ans, dis[maxn];
bool vis[maxn];
queue<int> q; inline void putit()
{
scanf("%d%d", &n, &m);
for(int a, b, i = 1; i <= m; ++i){
scanf("%d%d%d", &a, &b, &lin.dis); lin.num = i;
lin.to = b; point[a].push_back(lin);
lin.to = a; point[b].push_back(lin);
}
scanf("%d", &s);
} inline void spfa()
{
int now, qwe; memset(dis, 0x3f, sizeof(dis)); dis[s] = 0; q.push(s);
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = false;
for(int i = point[now].size() - 1; i >= 0; --i){
qwe = point[now][i].to;
if(dis[qwe] > dis[now] + point[now][i].dis){
dis[qwe] = dis[now] + point[now][i].dis;
if(!vis[qwe]){vis[qwe] = true; q.push(qwe);}
}
}
}
} inline bool cmp(ld A, ld B){return A.dis < B.dis;} inline void workk()
{
for(int i = 1; i <= n; ++i){node[i].num = i; node[i].dis = dis[i];}
sort(node + 1, node + n + 1, cmp);
int t, now, qwe, num;
for(int i = 1; i <= n; ++i){
t = node[i].num; if(t == s) continue;
qwe = 2e9;
for(int j = point[t].size() - 1; j >= 0; --j){
now = point[t][j].to;
if(dis[now] + point[t][j].dis != dis[t]) continue;
if(point[t][j].dis < qwe){
qwe = point[t][j].dis; num = point[t][j].num;
}
}
ans += qwe; vis[num] = true;
}
} inline void print()
{
cout << ans << endl;
for(int i = 1; i <= m; ++i)
if(vis[i]) printf("%d ", i);
} int main()
{
putit();
spfa();
workk();
print();
return 0;
}

Codeforces Paths and Trees的更多相关文章

  1. Codeforces 545E. Paths and Trees 最短路

    E. Paths and Trees time limit per test: 3 seconds memory limit per test: 256 megabytes input: standa ...

  2. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  3. Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  5. codeforces 545E E. Paths and Trees(单源最短路+总权重最小)

    E. Paths and Trees time limit per test:3 seconds memory limit per test:256 megabytes input:standard ...

  6. [Codeforces 545E] Paths and Trees

    [题目链接] https://codeforces.com/contest/545/problem/E [算法] 首先求 u 到所有结点的最短路 记录每个节点最短路径上的最后一条边         答 ...

  7. Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)

    题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...

  8. 「日常训练」Paths and Trees(Codeforces Round 301 Div.2 E)

    题意与分析 题意是这样的,定义一个从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 现在求一棵最短生成树,输出总边权和与选取边的编号. 我们首先要明白这样一个结论:对一个图求 ...

  9. Codeforces 545E. Paths and Trees[最短路+贪心]

    [题目大意] 题目将从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 题目要求一颗最短生成树,输出总边权和与选取边的编号.[题意分析] 比如下面的数据: 5 5 1 2 2 ...

随机推荐

  1. 20180329-layoutSubviews的调用机制

    如果你想强制更新布局,不要直接调用此方法,你可以调用setNeedsLayout方法,如果你想立即显示你的views,你需要调用layoutIfNeed方法 layoutSubviews作用: lay ...

  2. Intellij 选择profile

    注意有3个地方需要改

  3. Sass-加法

    程序中的运算是常见的一件事情,但在 CSS 中能做运算的,到目前为止仅有 calc() 函数可行.但在 Sass 中,运算只是其基本特性之一.在 Sass 中可以做各种数学计算 (一).加法 加法运算 ...

  4. python 模仿 C/C++ 结构体

    import struct from ctypes import * class MyStruct(Structure): _fields_ = [ ("v1", c_char), ...

  5. Centos 安装.NET Core环境

    https://dotnet.microsoft.com/learn/dotnet/hello-world-tutorial/install 一.概述 本篇讨论如何把项目发布到Linux环境,主要包括 ...

  6. vue2.0 使用 vue-aplayer

    1.安装 npm i vue-aplayer 2.引入 import VueAplayer from 'vue-aplayer' name: "Aplayer", props: [ ...

  7. vue+element-ui 实现分页(根据el-table内容变换的分页)

    官方例子 官方提示: 设置layout,表示需要显示的内容,用逗号分隔,布局元素会依次显示.prev表示上一页,next为下一页,pager表示页码列表,除此以外还提供了jumper和total,si ...

  8. 循环移动List元素

    List 循环移动元素 使用 Collections 类的 rotate() 来循环移动元素,方法第二个参数指定了移动的起始位置: public class RotateList { public s ...

  9. gcc开启C99或C11标准支持

    开启C99支持 gcc -std=c99 forc99.c 开启C11支持 gcc -std=c1x forc11.c 或 gcc -std=c11 forc11.c

  10. VUE中使用canvas做签名功能,兼容IE

    <template>         <div>           <div class="msgInput">             &l ...