Paths and Trees

time limit per test3 seconds

memory limit per test256 megabytes

Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.

Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.

You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.

Input

The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.

Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.

The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.

Output

In the first line print the minimum total weight of the edges of the tree.

In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.

If there are multiple answers, print any of them.

Examples

input

3 3

1 2 1

2 3 1

1 3 2

3

output

2

1 2

input

4 4

1 2 1

2 3 1

3 4 1

4 1 2

4

output

4

2 3 4

Note

In the first sample there are two possible shortest path trees:

with edges 1 – 3 and 2 – 3 (the total weight is 3);

with edges 1 – 2 and 2 – 3 (the total weight is 2);

And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.





题目大概意思就是给定 n 个点, m 条边的无向图和一个点 u,找出若干条边组成一个子图,要求这个子图中 u 到其他点的最短距离与在原图中的相等,并且要求子图所有边的权重和最小,求出最小值。

显然要先跑一次最短路。。。

然后你想一下对于一个点,只要有一条边从一个近一点的点能够转移过来构成他的最短路就够了。。。所以就贪心就好了,找一个最短的边保证可以就好了。。。


#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e5 + 5;
struct lpl{
int to, dis, num;
}lin;
struct ld{
int num;
long long dis;
}node[maxn];
vector<lpl> point[maxn];
int n, m, s;
long long ans, dis[maxn];
bool vis[maxn];
queue<int> q; inline void putit()
{
scanf("%d%d", &n, &m);
for(int a, b, i = 1; i <= m; ++i){
scanf("%d%d%d", &a, &b, &lin.dis); lin.num = i;
lin.to = b; point[a].push_back(lin);
lin.to = a; point[b].push_back(lin);
}
scanf("%d", &s);
} inline void spfa()
{
int now, qwe; memset(dis, 0x3f, sizeof(dis)); dis[s] = 0; q.push(s);
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = false;
for(int i = point[now].size() - 1; i >= 0; --i){
qwe = point[now][i].to;
if(dis[qwe] > dis[now] + point[now][i].dis){
dis[qwe] = dis[now] + point[now][i].dis;
if(!vis[qwe]){vis[qwe] = true; q.push(qwe);}
}
}
}
} inline bool cmp(ld A, ld B){return A.dis < B.dis;} inline void workk()
{
for(int i = 1; i <= n; ++i){node[i].num = i; node[i].dis = dis[i];}
sort(node + 1, node + n + 1, cmp);
int t, now, qwe, num;
for(int i = 1; i <= n; ++i){
t = node[i].num; if(t == s) continue;
qwe = 2e9;
for(int j = point[t].size() - 1; j >= 0; --j){
now = point[t][j].to;
if(dis[now] + point[t][j].dis != dis[t]) continue;
if(point[t][j].dis < qwe){
qwe = point[t][j].dis; num = point[t][j].num;
}
}
ans += qwe; vis[num] = true;
}
} inline void print()
{
cout << ans << endl;
for(int i = 1; i <= m; ++i)
if(vis[i]) printf("%d ", i);
} int main()
{
putit();
spfa();
workk();
print();
return 0;
}

Codeforces Paths and Trees的更多相关文章

  1. Codeforces 545E. Paths and Trees 最短路

    E. Paths and Trees time limit per test: 3 seconds memory limit per test: 256 megabytes input: standa ...

  2. Codeforces Round #303 (Div. 2) E. Paths and Trees 最短路+贪心

    题目链接: 题目 E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes inputs ...

  3. Codeforces Round #303 (Div. 2)E. Paths and Trees 最短路

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #303 (Div. 2) E. Paths and Trees Dijkstra堆优化+贪心(!!!)

    E. Paths and Trees time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  5. codeforces 545E E. Paths and Trees(单源最短路+总权重最小)

    E. Paths and Trees time limit per test:3 seconds memory limit per test:256 megabytes input:standard ...

  6. [Codeforces 545E] Paths and Trees

    [题目链接] https://codeforces.com/contest/545/problem/E [算法] 首先求 u 到所有结点的最短路 记录每个节点最短路径上的最后一条边         答 ...

  7. Codeforces Round #303 (Div. 2)(CF545) E Paths and Trees(最短路+贪心)

    题意 求一个生成树,使得任意点到源点的最短路等于原图中的最短路.再让这个生成树边权和最小. http://codeforces.com/contest/545/problem/E 思路 先Dijkst ...

  8. 「日常训练」Paths and Trees(Codeforces Round 301 Div.2 E)

    题意与分析 题意是这样的,定义一个从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 现在求一棵最短生成树,输出总边权和与选取边的编号. 我们首先要明白这样一个结论:对一个图求 ...

  9. Codeforces 545E. Paths and Trees[最短路+贪心]

    [题目大意] 题目将从某点出发的所有最短路方案中,选择边权和最小的最短路方案,称为最短生成树. 题目要求一颗最短生成树,输出总边权和与选取边的编号.[题意分析] 比如下面的数据: 5 5 1 2 2 ...

随机推荐

  1. activiti 5.22 表结构解析及清空流程运行测试数据

    1.结构设计 1.1.    逻辑结构设计 Activiti使用到的表都是ACT_开头的. ACT_RE_*: 'RE'表示repository(存储),RepositoryService接口所操作的 ...

  2. Java与C++对比

    Java的优势 Java是纯面向对象的,能够反映一切生活中的对象,编写程序更为容易. 平台无关性,“一次编译,到处运行”.(面试:为什么? 因为Java对每种数据类型分配的长度是固定的,但C++不是) ...

  3. 第二节:专做自己是小白——重新认识MySQL 学习记录

    一.安装MySQL的一些知识点 1.进程号是操作系统随机分配,每次启动程序都会有一个新的进程号.    2.mysql服务器进程默认名称MySQL,MySQL客户端进程默认名称mysql.    3. ...

  4. Docker的使用(未完待续)

    一.帮助命令 docker version docker info docker --help 二.镜像命令 列出机器上所有的镜像 docker images 查找某个镜像 docker search ...

  5. Vue实例与组件的关系

    所有的 Vue 组件都是 Vue 实例,可以看成Vue组件就是Vue实例的扩展. <div id="app"> <child></child> ...

  6. java 反转数组

    package java03; public class Demo05ArrayReversr { public static void main(String[] args) { int[] arr ...

  7. canvas 星星闪烁的效果

    代码实例: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF ...

  8. 聊聊Dubbo - Dubbo可扩展机制实战

    1. Dubbo的扩展机制 在Dubbo的官网上,Dubbo描述自己是一个高性能的RPC框架.今天我想聊聊Dubbo的另一个很棒的特性, 就是它的可扩展性. 如同罗马不是一天建成的,任何系统都一定是从 ...

  9. webpack对脚本和样式的处理

    一.对js处理 webpack本身支持js加载也可以用插件. 1.加载要全局使用的插件比如jquery 在页面用cdn方式引用,然后再webpack.config.js里配置.会让jquery成为全局 ...

  10. window server 2008 r2 安装ftp

    一.安装ftp服务 1.在服务管理器“角色”右键单击“添加角色”.  2.下一步. 3.勾选“Web 服务器(IIS)”,下一步. 4.勾选“FTP 服务器”,下一步. 5.安装完成,点击“关闭”.  ...