每日总结不能少!让自己的头脑好好清醒清醒,才不会犯那些所谓的低级错误!

Contest

A. ssoj3045 A 先生砍香蕉树

根据数据范围 \(m\le 1000,b\le 10000\),显然本题直接暴力枚举格点即可。没想到我为了优化代码推半天还推错了……

我最近做题有一个很主观的感知就是,我的复杂度估计很不准,数组大小估计也是。看来要好好反省一下。

DFS 遍历全图的复杂度是 \(O(m)\),DFS 枚举排列是 \(O(n!)\),DFS 枚举区间是 \(O(n^2)\),有单调性可以化为 \(O(n)\) 或 \(O(n\log n)\)。

BFS 复杂度与 DFS 差不多,主要是在栈空间上面的问题。

最短路 Floyd 复杂度 \(O(n^3)\),Dijkstra 复杂度 \(O(m\log m)\),SPFA 复杂度 \(O(nm)\),最小生成树 Kruskal \(O(m\log m)\)。

LCA 欧拉序上 ST 算法复杂度预处理 \(O(n\log n)\),每次询问 \(O(1)\)。

拓扑排序 \(O(n+m)\),强连通分量 Kosaraju \(O(n+m)\)(求后序遍历 dfn \(O(m)\),从 dfn 最大的顶点反向 DFS 为一个强连通分量;剩余点继续取 dfn 最大 DFS \(O(n)\))。

log 级别数据结构有 树状数组、线段树,并查集均摊 \(O(1)\)。线段树开 4 倍空间,常数大。

排序算法 \(O(n\log n)\)。

先背诵下来,再理解理解。

B. 草堆摆放 (restack)

FJ 买了一些干草堆,他想把这些干草堆分成 \(N\) 堆 (\(1\le N\le 100,000\)) 摆成一圈,其中第 \(i\) 堆有 \(B_i\) 数量的干草。不幸的是,负责运货的司机由于没有听清 FJ 的要求,只记住分成 \(N\) 堆摆成一圈这个要求,而每一堆的数量却是 \(A_i\) (\(1\le i\le N\))。当然 \(A_i\) 的总和肯定等于 \(B_i\) 的总和。FJ 可以通过移动干草来达到要求,即使得 \(A_i=B_i\),已知把一个干草移动 \(x\) 步需要消耗 \(x\) 数量的体力,相邻两个干草堆之间的步数为 1。请帮助 FJ 计算最少需要消耗多少体力才能完成任务。

与蓝书 P4 分金币同理。最终转化为求解中位数

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
#define ll long long int n, B[100005];
ll ans; int main() {
scanf("%d", &n);
for (int i=1, A; i<=n; ++i) scanf("%d%d", &A, &B[i]), B[i]+=B[i-1]-A;
sort(B+1, B+n+1);
for (int i=1, m=n+1>>1; i<=n; ++i) ans+=B[m]>B[i]?B[m]-B[i]:B[i]-B[m];
printf("%lld\n", ans);
return 0;
}

C. Elephants (slo)

对于一个 \(1-N\) 的排列 \(a\),每次你可以交换两个数 \(a_x\) 与 \(a_y\),代价为 \(m(a_x)+m(a_y)\)。若干次交换的代价为每次交换的代价之和。\(N\) 个 100 到 6500 的整数,按照某个顺序排列。现在要交换若干次,每次交换两个数的位置,使得变成目标顺序。 请问将 \(a\) 变为 \(b\) 所需的最小代价是多少。

D. 电路维修

目前想法是 Dijkstra 做最短路,但因为数据水 AC 了。实际上这么做是有问题的,因为一个节点可能被多次访问。

正解应该是在 deque 上做 BFS。维护双端队列,新入队的边如果边权为 0 加入队头,边权为 1 加入队尾。这样就没有什么问题了。

我真是疯了,数组开那么小还 debug 半天……

7 November in 614的更多相关文章

  1. 8 November in 614

    我开始看心灵鸡汤了-- 每当在书中读及那些卑微的努力,都觉得感动且受震撼.也许每个人在发出属于自己的光芒之前,都经历了无数的煎熬,漫长的黑夜,无尽的孤独,甚至不断的嘲讽和否定,但好在那些踮脚的少年,最 ...

  2. 6 November in 614

    Contest A. greet map,完了. B. gift map,完了. C. [Usaco2008 Nov Gold] 安慰奶牛 最小生成树.新边权设为原边权的两倍,再加上两端点的点权.完了 ...

  3. 5 November in 614

    Contest A. ssoj2964 交错的士兵 \(n\) 个数的排列,从左到右依次为 1, 2, -, \(n\).\(n\) 次操作,对于第 \(i\) 次操作,从左到右分成很多段,每段 \( ...

  4. [POJ1765]November Rain

    [POJ1765]November Rain 试题描述 Contemporary buildings can have very complicated roofs. If we take a ver ...

  5. We will be discontinuing the Nitrous Development Platform and Cloud IDE on November 14th, 2016.

    我表示我很难过 Nitrous We will be discontinuing the Nitrous Development Platform and Cloud IDE on November ...

  6. TIOBE Index for November 2015(转载)

    原文地址:http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html November Headline: Java once a ...

  7. 日常英语---七、[Updated November 14 at 4:10 PM PST] Scheduled Game Update - November 14, 2018(n.标准)

    日常英语---七.[Updated November 14 at 4:10 PM PST] Scheduled Game Update - November 14, 2018(n.标准) 一.总结 一 ...

  8. Multi-Cloud & Kubernetes: Cloud Academy November 2018 Data Report

    https://cloudacademy.com/research/multi-cloud-kubernetes-devops-cloud-academy-data-report-nov-18/ No ...

  9. ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010

    ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...

随机推荐

  1. python自定义异常实例详解

    python自定义异常实例详解 本文通过两种方法对Python 自定义异常进行讲解,第一种:创建一个新的exception类来拥有自己的异常,第二种:raise 唯一的一个参数指定了要被抛出的异常 1 ...

  2. Jmeter发送SOAP请求对WebService接口测试

    Jmeter发送SOAP请求对WebService接口测试 1.测试计划中添加一个用户自定义变量 2.HTTP信息头管理器,添加Content-Tpe,  application/soap+xml;c ...

  3. 16/7/11_PHP-图形图像操作

    GD库简介 GD指的是Graphic Device,PHP的GD库是用来处理图形的扩展库,通过GD库提供的一系列API,可以对图像进行处理或者直接生成新的图片. PHP除了能进行文本处理以外,通过GD ...

  4. 交换机vlan配置

    vlan:virtual LAN  虚拟局域网 作用:通过VLAN技术,可以对局域网进行隔离,互相隔离开的局域网相互之间不能进行通信,一个VLAN为一个广播域 Vlan配置 GNS3(使用路由器来模拟 ...

  5. C. Roads in Berland

    题目链接: http://codeforces.com/problemset/problem/25/C 题意: 给一个最初的所有点与点之间的最短距离的矩阵.然后向图里加边,原有的边不变,问加边后的各个 ...

  6. linux点滴记录

    以下均为在Ubuntu下实践操作 更改DNS //编辑文件 - “/etc/resolv.conf”,打开“终端应用程序”-“附件” - “终端”,在终端里输入下面的命令: sudo nano /et ...

  7. 洛谷P3379 【模板】最近公共祖先(LCA)——LCA

    给一手链接 https://www.luogu.com.cn/problem/P3379 算是lca的模板吧 #include<cstdio> #include<cstring> ...

  8. spring-第五篇之spring容器中的bean

    1.bean的基本定义和bean别名 2.容器中bean的作用域 singleton:单例模式,在整个spring IoC容器中,singleton作用域的bean将只生成一个实例. prototyp ...

  9. P2469 [SDOI2010]星际竞速(费用流)

    P2469 [SDOI2010]星际竞速 最小路径覆盖问题 每个星球必须恰好去一次,而每次高速航行都是从一个星球到另一个星球. 那么高速航行的起点可以保证被去过 高速航行和空间跳跃可以是互相独立的 将 ...

  10. JavaScript——面向对象编程

    什么是面向对象? 面向对象编程(Object Oriented Programming,OOP编程)是一种计算机编程架构,它将真实世界各种复杂的关系,抽象为一个个对象,然后由对象之间的分工与合作,完成 ...