传送门

解题思路

  用高斯消元对矩阵求逆,设\(A*B=C\),\(C\)为单位矩阵,则\(B\)为\(A\)的逆矩阵。做法是把\(B\)先设成单位矩阵,然后对\(A\)做高斯消元的过程,对\(B\)进行同样的操作,最后把\(A\)消成单位矩阵时,\(B\)就是其的逆矩阵。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm> using namespace std;
const int N=405;
const int MOD=1e9+7; inline int rd(){
int x=0,f=1; char ch=getchar();
while(!isdigit(ch)) f=ch=='-'?0:1,ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return f?x:-x;
} int n,a[N][N],b[N][N]; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=1ll*ret*x%MOD;
x=1ll*x*x%MOD;
}
return ret;
} bool gauss(){
int tmp;
for(int i=1;i<=n;++i){
if(!a[i][i]){
for(int j=i+1;j<=n;++j)
if(a[j][i]) {
for(int k=1;k<=n;k++) swap(a[j][k],a[i][k]),swap(b[j][k],b[i][k]);
break;
}
}
if(!a[i][i]) {puts("No Solution"); return 0;}
tmp=fast_pow(a[i][i],MOD-2);
for(int j=1;j<=n;++j)
a[i][j]=1ll*a[i][j]*tmp%MOD,b[i][j]=1ll*b[i][j]*tmp%MOD;
for(register int j=1;j<=n;++j)if(j!=i){
tmp=a[j][i];
for(register int k=1;k<=n;++k)
a[j][k]=(a[j][k]-1ll*a[i][k]*tmp%MOD+MOD)%MOD,
b[j][k]=(b[j][k]-1ll*b[i][k]*tmp%MOD+MOD)%MOD;
}
}
return 1;
} int main(){
n=rd();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) a[i][j]=rd();
for(int i=1;i<=n;i++) b[i][i]=1;
if(gauss()){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++)
printf("%d ",b[i][j]);
putchar('\n');
}
}
return 0;
}

LUOGU P4783 【模板】矩阵求逆(高斯消元)的更多相关文章

  1. 洛谷P4783 【模板】矩阵求逆(高斯消元)

    题意 题目链接 Sol 首先在原矩阵的右侧放一个单位矩阵 对左侧的矩阵高斯消元 右侧的矩阵即为逆矩阵 // luogu-judger-enable-o2 #include<bits/stdc++ ...

  2. luogu 3389 【模板】高斯消元

    大概就是对每一行先找到最大的减小误差,然后代入消元 #include<iostream> #include<cstdio> #include<cstring> #i ...

  3. Luogu P3389 高斯消元

    https://www.luogu.com.cn/problem/P3389 主元消元法[模板] 高斯消元是解决多元线性方程组的方法,再学习它之前,先引入一个东西--行列式 行列式的性质: 这里我们只 ...

  4. HDU 2827 高斯消元

    模板的高斯消元.... /** @Date : 2017-09-26 18:05:03 * @FileName: HDU 2827 高斯消元.cpp * @Platform: Windows * @A ...

  5. Luogu4783 【模板】矩阵求逆(高斯消元)

    对矩阵进行高斯消元直至消为单位矩阵,并在另一个单位矩阵上对其做同样的操作即可. 模意义下的高斯消元可以直接计算系数来避免整行的辗转相除. 还不知道有什么用. #include<iostream& ...

  6. 【Luogu】P3389高斯消元模板(矩阵高斯消元)

    题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...

  7. 高斯消元 分析 && 模板 (转载)

    转载自:http://hi.baidu.com/czyuan_acm/item/dce4e6f8a8c45f13d7ff8cda czyuan 先上模板: /* 用于求整数解得方程组. */ #inc ...

  8. 高斯消元模板!!!bzoj1013

    /* 高斯消元模板题 n维球体确定圆心必须要用到n+1个点 设圆心坐标(x1,x2,x3,x4...xn),半径为C 设第i个点坐标为(ai1,ai2,ai3,,,ain)那么对应的方程为 (x1-a ...

  9. luogu P2962 [USACO09NOV]灯Lights 高斯消元

    目录 题目链接 题解 题目链接 luogu P2962 [USACO09NOV]灯Lights 题解 可以折半搜索 map合并 复杂度 2^(n / 2)*logn 高斯消元后得到每个点的翻转状态 爆 ...

随机推荐

  1. Win7 64位注册32位DLL

    记忆力越来越差,备忘. 参考地址 https://support.microsoft.com/en-us/help/249873/how-to-use-the-regsvr32-tool-and-tr ...

  2. java--反射原理及操作

    1.反射原理 反射具体操作 15.反射的原理(********理解********) * 应用在一些通用性比较高的代码 中 * 后面学到的框架,大多数都是使用反射来实现的 * 在框架开发中,都是基于配 ...

  3. Pikachu漏洞练习平台实验——不安全的文件下载和上传(七)

    1.不安全的文件下载 1.1.概述 文件下载功能在很多web系统上都会出现,一般我们当点击下载链接,便会向后台发送一个下载请求,一般这个请求会包含一个需要下载的文件名称,后台在收到请求后 会开始执行下 ...

  4. File类的相关方法

    java.io.File类 文件和路径名的抽象表达形式 java把电脑中的文件和文件夹(目录)封装了一个File类,我们可以使用File类对文件和文件夹进行如下操作 创建一个文件/文件夹 删除 获取 ...

  5. [SHOI2012] 火柴游戏

    [SHOI2012] 火柴游戏 [题目链接] 链接 [思路要点] 首先发现移动火柴操作可以放到最后做.每一次移动火柴一定可以看做是添加一根火柴再删除一根火柴,并且可以将任意一次添加和一次删除操作合并为 ...

  6. 2019Flutter面试题最新整理大全(含答案)

    一.前言2019年行将结束,也该规划一下自己的职业生涯了:是选择继续从事Android(Android的话已经火了几年了,现在算是进入寒冬了,需要考虑清楚)?还是学习新的跨平台开发Flutter技术? ...

  7. 洛谷 P3374 【模板】树状数组 1(单点加,区间和)

    题目链接 https://www.luogu.org/problemnew/show/P3374 树状数组 树状数组最基本的就是求区间和. 维护: 空间复杂度:O(n) 时间复杂度(区间和,单点修改) ...

  8. android 完全退出应用程序(经过严格验证)

    今天解决了如何彻底结束Android应用程序的方法.网上有很多的参考方法,什么finish():android.os.Process.killProcess(android.os.Process.my ...

  9. java静态方法使用泛型

    用法 import java.util.ArrayList; import java.util.Collection; import java.util.HashSet; import java.ut ...

  10. c#模板化生成接口

    最近打算做这样一个事情,一个桌面系统项目既可以一体化部署,作为一个软件一个进程部署,也可以把业务服务化部署. 那一般意味着我们要完全写2套东西,一套是直接UI调用业务,一套是Ui调用RPC.这样比较多 ...