有n只熊。他们站成一排队伍,从左到右依次1到n编号。第i只熊的高度是ai。

一组熊指的队伍中连续的一个子段。组的大小就是熊的数目。而组的力量就是这一组熊中最小的高度。

迈克想知道对于所有的组大小为x(1 ≤ x ≤ n)的,最大力量是多少。

Input
单组测试数据。
第一行有一个整数n (1 ≤ n ≤ 2×10^5),表示熊的数目。
第二行包含n个整数以空格分开,a1, a2, ..., an (1 ≤ ai ≤ 10^9),表示熊的高度。
Output
在一行中输出n个整数,对于x从1到n,输出组大小为x的最大力量。
Input示例
10
1 2 3 4 5 4 3 2 1 6
Output示例
6 4 4 3 3 2 2 1 1 1

求出以每个元素为最小值的区间的左边界和右边界,保存下来,r[i] - l[i] +1 就是a[i]可作为最小值的区间的最大长度,然后这个长度的区间肯定包含这个长度-1的区间,于是依次取最大值。
#include<stdio.h>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXSIZE 200005 using namespace std; int a[MAXSIZE],l[MAXSIZE],r[MAXSIZE],s[MAXSIZE],ans[MAXSIZE]; int main()
{
freopen("in.txt","r",stdin);
memset(ans,,sizeof(ans));
memset(s,,sizeof(s));
int n,top;
cin>>n;
for(int i=;i<=n;i++)
cin>>a[i];
top = ;
for(int i=;i<=n;i++)
{
if(top==)
{
s[++top] = i;
l[i] = i;
} else
{
while(top>= && a[s[top]]>=a[i])
{
top--;
}
if(top==)
l[i] = ;
else
l[i] = s[top]+;
s[++top] = i;
}
} top = ;
for(int i=n;i>=;i--)
{
if(top==)
{
s[++top] = i;
r[i] = i;
} else
{
while(top>= && a[s[top]]>=a[i])
{
top--;
}
if(top==)
r[i] = n;
else
r[i] = s[top]-;
s[++top] = i;
}
} for(int i=;i<=n;i++)
{
ans[r[i]-l[i]+] = max(ans[r[i]-l[i]+],a[i]);
}
for(int i=n-;i>=;i--)
{
ans[i] = max(ans[i+],ans[i]);
}
for(int i=;i<=n;i++)
{
if(i!=) cout<<" ";
cout<<ans[i];
}
return ;
}

51nod 1437 迈克步——单调栈的更多相关文章

  1. 51nod 1437 迈克步 单调栈

    利用单调栈高效的求出,一个数a[i]在哪个区间内可作为最小值存在. 正向扫描,求出a[i]可做为最小值的区间的左边界 反向扫描,求出a[i]可作为最小值的区间的右边界 r[i] - l[i] +1 就 ...

  2. 51nod 1437 迈克步(单调栈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1437 题意: 思路: 单调栈题.求出以每个数为区间最大值的区间范围即可. ...

  3. 51nod 1437:迈克步 单调栈基础题

    1437 迈克步 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  取消关注 有n只熊.他们站成一排队伍,从左到右依次1到 ...

  4. 51nod 1437 迈克步

    题目链接 先利用单调栈or其他方法找到一个元素g[i]作为最小值的区间,设为[L, R]. 那么长度为R-L+1的组的最大值ans=max(ans,g[i]).但是有一个问题: 比如6这个元素是长度为 ...

  5. 51nod1437 迈克步 单调栈

    考虑一个点作为最小值的区间$[L[i], R[i]]$ 那么这个区间的所有含$i$的子区间最小值都是$v[i]$ 因此,用单调栈求出$L[i], R[i]$后,对$R[i] - L[i] + 1$这个 ...

  6. 51nod 1102 【单调栈】

    思路: 对于这个高度往左能延伸最远x,往右能延伸最远y,(x+1+y)*w; 利用单调栈就行了: #include <cstdio> #include <stack> #inc ...

  7. 51nod 1102 面积最大的矩形 (单调栈)

    链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1102 思路: 首先介绍下单调栈的功能:利用单调栈,可以找到从左/ ...

  8. 51nod 1102 面积最大的矩形(单调栈)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1102 题意: 思路: 做法就是求出每个长方形向左向右所能延伸的最大距离. ...

  9. 51nod 1215 单调栈/迭代

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1215 1215 数组的宽度 题目来源: Javaman 基准时间限制:1 ...

随机推荐

  1. 【Flutter学习】页面布局之列表和表格处理

    一,概述 Flutter中拥有30多种预定义的布局widget,常用的有Container.Padding.Center.Flex.Row.Colum.ListView.GridView.按照< ...

  2. jmeter之--断言json响应&json path espressions的语法

    一.提取所需要断言的内容: 响应数据如下:加入需要提取id为90的值 { , "name" : "python", "url" : &quo ...

  3. 2019牛客第八场多校 E_Explorer 可撤销并查集(栈)+线段树

    目录 题意: 分析: @(2019牛客暑期多校训练营(第八场)E_Explorer) 题意: 链接 题目类似:CF366D,Gym101652T 本题给你\(n(100000)\)个点\(m(1000 ...

  4. PHP面试 AJAX基础内容

    AJAX基础内容 Ajax的基本工作原理 Ajax基础概念:通过在后台与服务器进行少量数据交换,Ajax可以使用网页实现异步更新 Ajax工作原理:XMLHttpRequest是Ajax的基础     ...

  5. 18. HTTP协议一:概述、原理、版本、请求方法

    HTTP协议概述 HTTP协议就是我们常说的超文本协议(HyperText Transfer Protocol).HTTP协议是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准. ...

  6. 查看mysql慢日志,进行优化

    MySQL 慢查询的相关参数解释:slow_query_log :是否开启慢查询日志,1表示开启,0表示关闭. slow_query_log    :是否开启慢查询日志,1表示开启,0表示关闭. lo ...

  7. HDU 3746 Cyclic Nacklace (KMP找循环节)

    题目链接:HDU 3746 Sample Input 3 aaa abca abcde Sample Output 0 2 5 Author possessor WC Source HDU 3rd & ...

  8. 从一个url地址到最终页面渲染完成,发生了什么?

    从一个url地址到最终页面渲染完成,发生了什么? 1.DNS 解析 : 将域名地址解析为IP地址 浏览器DNS缓存 系统DNS缓存 路由器DNS缓存 网络运营商DNS缓存 递归搜索: www.baid ...

  9. 求背景图片左边到#box盒子左边框外侧的距离

    box{ width: 100px; height: 200px; background: pink; padding: 100px; border: 80px solid; background-i ...

  10. LeetCode Array Easy169. Majority Element

    Description Given an array of size n, find the majority element. The majority element is the element ...