BZOJ1896 Equations 线性规划+半平面交+三分
题意简述
给你\(3\)个数组\(a_i\),\(b_i\)和\(c_i\),让你维护一个数组\(x_i\),共\(m\)组询问,每次给定两个数\(s\),\(t\),使得
\]
让你求出\(\mathrm{Maximize} \sum_i c_i x_i\)。
做法
显然题目是一个线性规划的模型,用\(x\),\(y\)表示两个新变量,使用对偶转化可得
&\mathrm{Minimize} \qquad &sx+ty \\
&\mathrm{Satisfy} \qquad &\forall i , a_ix+b_iy \geq c_i \\
& &x,y \in R
\end{split}
\]
发现可以用半平面交维护,所以预处理半平面交,对于\(sx+ty\)将其转成一条直线,二分/三分找极值即可,复杂度\(O((n+m) \log n)\)。
Code
#include<bits/stdc++.h>
using namespace std;
#define re register int
#define db double
#define ll long long
#define in inline
#define ak *
in char getch()
{
static char buf[10000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,10000,stdin),p1==p2)?EOF:*p1++;
}
#define gc() getch()
char qwq;
in int read()
{
re cz=0,ioi=1;qwq=gc();
while(qwq<'0'||qwq>'9') ioi=qwq=='-'?~ioi+1:1,qwq=gc();
while(qwq>='0'&&qwq<='9') cz=(cz<<3)+(cz<<1)+(qwq^48),qwq=gc();
return cz ak ioi;
}
const db inf=1e18,eps=1e-11;
const int N=1e5+5;
int n,m,k,top,tot;
db s,t;
struct poi{
db x,y;
poi(db _x=0,db _y=0) {x=_x,y=_y;}
}p[N];
struct line{
db k,b;
line(db _k=0,db _b=0) {k=_k,b=_b;}
in bool operator <(line x) const {return k==x.k?b>x.b:k<x.k;}
in poi operator &(line x) {return poi((x.b-b)/(k-x.k),(k*x.b-x.k*b)/(k-x.k));}
}e[N],q[N];
in db calc(re x) {return p[x].x*s+p[x].y*t;}
int main()
{
n=read();k=read();
for(re i=1;i<=n;i++)
{
db a=read(),b=read(),c=read();
e[++m]=line(-a/b,c/b);
}
sort(e+1,e+m+1);
for(re i=1;i<=m;i++)
{
if(top&&q[top].k==e[i].k) continue;
while(top>1&&(q[top]&q[top-1]).y<=(q[top]&q[top-1]).x*e[i].k+e[i].b) top--;
q[++top]=e[i];
}
for(re i=1;i<top;i++) p[++tot]=q[i]&q[i+1];
for(re i=1;i<=k;i++)
{
s=read(),t=read();
if(-s/t>q[top].k||-s/t<q[1].k) puts("IMPOSSIBLE");
else
{
db res=inf;re l=1,r=tot;
while(l<=r)
{
re ml=l+(r-l)/3,mr=r-(r-l)/3;
db cl=calc(ml),cr=calc(mr);
if(cl<cr) r=mr-1,res=cr;
else l=ml+1,res=cl;
}
printf("%.5lf\n",res);
}
}
}
BZOJ1896 Equations 线性规划+半平面交+三分的更多相关文章
- POJ 1755 Triathlon(线性规划の半平面交)
Description Triathlon is an athletic contest consisting of three consecutive sections that should be ...
- POJ 1755 Triathlon [半平面交 线性规划]
Triathlon Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6912 Accepted: 1790 Descrip ...
- 半平面交模板(O(n*n)&& O(n*log(n))
摘自http://blog.csdn.net/accry/article/details/6070621 首先解决问题:什么是半平面? 顾名思义,半平面就是指平面的一半,我们知道,一条直线可以将平面分 ...
- 洛谷P4250 [SCOI2015]小凸想跑步(半平面交)
题面 传送门 题解 设\(p\)点坐标为\(x_p,y_p\),那么根据叉积可以算出它与\((i,i+1)\)构成的三角形的面积 为了保证\(p\)与\((0,1)\)构成的面积最小,就相当于它比其它 ...
- [BZOJ1038][ZJOI2008]瞭望塔(半平面交)
1038: [ZJOI2008]瞭望塔 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2999 Solved: 1227[Submit][Statu ...
- 【POJ 3525】Most Distant Point from the Sea(直线平移、半平面交)
按逆时针顺序给出n个点,求它们组成的多边形的最大内切圆半径. 二分这个半径,将所有直线向多边形中心平移r距离,如果半平面交不存在那么r大了,否则r小了. 平移直线就是对于向量ab,因为是逆时针的,向中 ...
- 【BZOJ-2618】凸多边形 计算几何 + 半平面交 + 增量法 + 三角剖分
2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 959 Solved: 489[Submit][Status] ...
- 【CSU1812】三角形和矩形 【半平面交】
检验半平面交的板子. #include <stdio.h> #include <bits/stdc++.h> using namespace std; #define gg p ...
- 简单几何(半平面交+二分) LA 3890 Most Distant Point from the Sea
题目传送门 题意:凸多边形的小岛在海里,问岛上的点到海最远的距离. 分析:训练指南P279,二分答案,然后整个多边形往内部收缩,如果半平面交非空,那么这些点构成半平面,存在满足的点. /******* ...
随机推荐
- WCF 出现System.Core version 2.0.5.0 未能加载问题
Window server 2008 R2 Enterprise 版本测试: 需要安装Net补丁: NDP40-KB2468871-v2-x64 下载地址 https://www.microsoft. ...
- 我们建了一个 Golang 硬核技术交流群(内含视频福利)
目录 目录 Golang 是什么? 我们为什么选择 Golang? Golang 是云时代的宠儿! 我们搞了一场 Golang 入门直播 Golang 是什么? Golang 是谷歌 2009 年发布 ...
- Linux_文件系统、磁盘分区_RHEL7
目录 目录 前言 文件系统 目录结构 文件的类型 文件系统损坏后的修复 磁盘分区 分区的类型 分区最小存储单元 查看当前分区的block的大小 分区格式 MBR格式 GPT格式 mount挂载指令 挂 ...
- 阶段3 1.Mybatis_06.使用Mybatis完成DAO层的开发_6 Mybatis中使用Dao实现类的执行过程分析-增删改方法
从测试类入手,断点调试 找到实现类,进入到insert方法里面 这里是SqlSession的接口里面的方法. 我们需要找SqlSession的实现类. DefaultSqlSession 里面有两个i ...
- 【HBase】五、HBase的Java接口
HBase是Hadoop中的一个重要组件,自然也是基于Java语言开发的,因此HBase有很好的Java接口供程序员调用,通过一个例子来演示java如何使用HBase数据库. 要想在HBase ...
- 【Linux开发】如何在./configure的时候将编译参数传入,改变默认的编译器gcc成arm-linux-gcc
如何在configure时,将编译参数传入,改变默认的编译器gcc成arm-linux-gcc [问题] 想要用交叉编译工具arm-linux-gcc去编译lrzsz, 但是在./configure的 ...
- 【Qt开发】Linux下Qt开发环境的安装与集成
近期工作需要在Linux下用Qt进行C++开发,所以就在linux下尝试装QT开发环境.本人用的linux是CentOS 6.5.现在对安装过程做出总结.有两种安装方式,下面分别详述: 1 图形化安装 ...
- 20191128 Spring Boot官方文档学习(9.9)
9.9.数据存取 Spring Boot包含许多用于处理数据源的启动器. 9.9.1.配置自定义数据源 要配置自己的DataSource,请在配置中定义该类型的@Bean.Spring Boot可以在 ...
- [19/05/29-星期三] JavaScript_ 函数的简介
一.函数的简介 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <t ...
- java.io.IOException: Cannot run program "/opt/jdk1.8.0_191/bin/java" (in directory "/var/lib/jenkins/workspace/xinguan"): error=2, No such file or directory
测试jenkins构建,报错如下 Parsing POMs Established TCP socket on 44463 [xinguan] $ /opt/jdk1.8.0_191/bin/java ...