7.3.3 自适应滤波器

自适应中值滤波器

对于7.3.2节所讨论的中值滤波器,只要脉冲噪声的空间密度不大,性能还是可以的(根据经验需Pa和Pb小于0.2)。本节将证明,自适应中值滤波器可以处理更大概率的脉冲噪声。自适应中值滤波器的另一个优点是平滑非脉冲噪声时,试图保留细节,这是传统中值滤波器所做不到的。正如前面几节中所讨论的所有滤波器一样,自适应中值滤波器也工作于矩形窗口区域Sxy内。然而,与这些滤波器不同的是自适应中值滤波器在进行滤波处理时,会根据本节列举的某些条件而改变(增大或缩小)Sxy的尺寸。记住,滤波器的输出是一个单值,该值用于替代点(x,y)处的像素值,位于(x,y)处的点是Sxy的中心也是它的锚点。

考虑如下符号:

Zmin=Sxy中的最小灰度值;

Zmax=Sxy中的最大灰度值;

Zmed=Sxy中的中值;

Zxy=坐标(x,y)处的灰度值;

Smax=Sxy所允许的最大尺寸(在程序中,用kernal_size表示);

自适应中值滤波算法以两个进程工作,分别为进程A和B,如下所示:

进程A:

如果Zmin<Zmed<Zmax,则转到进程B
     否则增大窗口尺寸;
     增大后的窗口尺寸(程序中用ks表示),
     如果ks<Smax,则重复A。(在程序中,kernal_size即Smax)
     否则输出Zmed

进程B:

如果Zmin<Zxy<Zmax,则输出Zxy
     否则,输出Zmed.

该算法的设计意图是要实现3个目的:①去除椒盐噪声;②平滑其它非脉冲噪声;③减少物体边界细化或粗化的失真。Zmin和Zmax和在算法统计上,认为是类脉冲噪声分量,既使它们不是图像中的最大值或最小值。

进程A的目的是确定中值滤波器的输出Zmed,是否是一个脉冲(黑或白)。如果条件Zmin<Zmed<Zmax有效,则根据前节提到的原因,Zmed不可能是脉冲。这种情况下,转到进程B,检验窗口Sxy的中心点Zxy(即锚点)是否是一个脉冲。如果满足条件,就不是脉冲,原因与前同。这时,算法输出一个未修改的像素值Zxy。通过不修改这些“中间灰度级”的点,减少图像中的失真。如果Zmin<Zxy<Zmax为假,则Zxy=Zmin或Zxy=Zmax。在任何一种情况下,像素值都是一个极端值,且算法输出中值Zmed,从进程A可知Zmed不是脉冲噪声。最后一步是执行标准的中值滤波。问题是,标准中值滤波器使用图像中相应邻域的中值代替图像中的每一点,这会引起不必要的细节损失。

继续上面的说明,假设进程A确实找到了一个脉冲(若不是,则转到进程B),算法会增大窗口尺寸,并重复进程A。该循环会一直继续,直到算法找到一个非脉冲的中值,并转到进程B。如果循环中窗口达到了最大尺寸,则算法会返回值Zmed。注意,这并不能保证该值不是脉冲。噪声的概率Pa或Pb越小,或者在Sxy允许的范围内越大,退出条件也就越难满足。这是合理的,随着脉冲密度的增大,我们会需要更大的窗口来消除尖峰噪声。

算法没输出一个值,窗口Sxy就被移动到图像中的下一个位置。然后,算法重新初始化并应用到新位置的像素。仅使用新像素就可以反复更新中值,因而减少了计算开销。

#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>
#include <algorithm>
using namespace cv;
using namespace std;
//下面的宏,定义了在矩阵src的第m行、n列,ks*ks覆盖的矩形区域内的像素,并将像素压到矢量v中
//该覆盖区域的左上角坐标为(m,n),宽为ks,高为ks,要求src必须是单通道,数据类型为CV_8UC1
#define CV_ROI_ELEM(src,vector,m,n,ks) \
{ \
uchar* kn; \
int st0=src.step[];\
int st1=src.step[];\
for(int k=;k<(ks);k++) \
{ \
for(int s=;s<(ks);s++) \
{ \
kn =src.data+(k+m)*st0+(s+n)*st1; \
vector.push_back(*kn); \
} \
} \
} #define CV_MAT_ELEM2(src,dtype,y,x) \
(dtype*)(src.data+src.step[]*(y)+src.step[]*(x))
/*********************自适应中值滤波********************************/
void selfAdaptiveMedianBlur(Mat&src,Mat&dst,int kernal_size)
{
CV_Assert(src.type()==CV_8UC1||src.type()==CV_8U);
if(dst.empty())
{
dst.create(src.rows,src.cols,CV_8UC1);
}
uchar* pdst=dst.data;
uchar Zmin,Zmax,Zmed,Zxy;
int step0=src.step[];
int step1=src.step[];
for(int i=kernal_size/;i<src.rows-kernal_size/;i++)
{
for(int j=kernal_size/;j<src.cols-kernal_size/;j++)
{
int ks=;//kernal_size;
int count=;
Zxy=*CV_MAT_ELEM2(src,uchar,i,j);//Sxy覆盖区域的中心点像素值,即锚点像素值
vector<uchar> v;//将模板覆盖区域的像素,压入矢量v中
do{
if(cout==)
{//获取模板ks*ks覆盖区域的像素,压入矢量v中
CV_ROI_ELEM(src,v,i-ks/,j-ks/,ks);
}
else
{
/****************下面的for循环,将外扩的四个边的像素添加到v中**************/
uchar* p=src.data+(i-ks/)*step0+(j-ks/)*step1;
for(int u=;u<ks;u++)
{
v.push_back(*(p+u*step1));//向外扩展的四个边的上边
v.push_back(*(p+(ks-)*step0+u*step1));//向外扩展的四个边的下边
if(u!=&&u!=ks-)
{
v.push_back( *(p+u*step0));//向外扩展的四个边的左边
v.push_back(*(p+u*step0+(ks-)*step1));//向外扩展的四个边的右边
}
}
} //对v的元素排序
//排序后,Sxy覆盖区域内,最大值为Zmax=v[v.size-1],最小值为Zmin=v[0]
std::sort(v.begin(),v.end());
Zmin=v[],Zmax=v[v.size()-],Zmed=v[ks*ks/];
pdst =CV_MAT_ELEM2(dst,uchar,i,j);
if(Zmin<Zmed&&Zmed<Zmax)
{
if(Zmin<Zxy&&Zxy<Zmax)
{*pdst=Zxy;break;}
else
{*pdst=Zmed;break;}
}
else
{
ks +=;
}
count++;
}while(ks<=kernal_size); *pdst=Zmed;
}
}
} int main()
{
Mat src=imread("D:\\Qt\\MyImage\\3.bmp",);
imshow("src image",src); Mat dst;
selfAdaptiveMedianBlur(src,dst,); imshow("adaptive median filter",dst); waitKey(); return ;
}

原图像:

自适应中值滤波后的图像:

基于Opencv的自适应中值滤波函数selfAdaptiveMedianBlur()的更多相关文章

  1. opencv-11-中值滤波及自适应中值滤波

    开始之前 在上一篇我们实现了读取噪声图像, 然后 进行三种形式的均值滤波得到结果, 由于我们自己写的均值滤波未作边缘处理, 所以效果有一定的下降, 但是总体来说, 我们得到的结果能够说明我们的算法执行 ...

  2. 基于记忆性的中值滤波O(r)与O(1)复杂度的算法实现

    本文参考博客:https://www.cnblogs.com/Imageshop/archive/2013/04/26/3045672.html 原生的中值滤波是基于排序算法的,这样的算法复杂度基本在 ...

  3. verilog实现中值滤波

    前言 项目需要,想要实现算法中的其中一步即中值滤波,同时,因为图像处理部分中值滤波相对来说还是比较简单的,将中值滤波的硬件实现作为进入FPGA领域的第一次尝试.虽然说网上有较多关于中值滤波的文档,可是 ...

  4. OpenCV计算机视觉学习(4)——图像平滑处理(均值滤波,高斯滤波,中值滤波,双边滤波)

    如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice &q ...

  5. Win8Metro(C#)数字图像处理--2.10图像中值滤波

    原文:Win8Metro(C#)数字图像处理--2.10图像中值滤波  [函数名称] 图像中值滤波函数MedianFilterProcess(WriteableBitmap src) [函数代码] ...

  6. 基于MATLAB的中值滤波算法实现

    在实时图像采集中,不可避免的会引入噪声,尤其是干扰噪声和椒盐噪声,噪声的存在严重影响边缘检测的效果,中值滤波是一种基于排序统计理论的非线性平滑计数,能有效平滑噪声,且能有效保护图像的边缘信息,所以被广 ...

  7. opencv —— boxFilter、blur、GaussianBlur、medianBlur、bilateralFilter 线性滤波(方框滤波、均值滤波、高斯滤波)与非线性滤波(中值滤波、双边滤波)

    图像滤波,指在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像与处理中不可缺少的操作. 邻域算子,指利用给定像素及其周围的像素值,决定此像素的最终输出值的一种算子.线性邻域滤波器就是一种常 ...

  8. [学习opencv]高斯、中值、均值、双边滤波

    http://www.cnblogs.com/tiandsp/archive/2013/04/20/3031862.html [学习opencv]高斯.中值.均值.双边滤波 四种经典滤波算法,在ope ...

  9. 基于FPGA的中值滤波算法实现

    在这一篇开篇之前,我需要解决一个问题,上一篇我们实现了基于FPGA的均值滤波算法的实现,最后的显示效果图上发现有一些黑白色的斑点,我以为是椒盐噪声,然后在做基于FPGA的中值滤波算法的实验时,我发现黑 ...

随机推荐

  1. eclipse中安装Activiti插件

    由于公司网络问题,不能在线安装,下载到本地的插件,安装也是各种问题,后面终于找到能安装的插件包 1.下载eclipse activiti插件包 链接:https://pan.baidu.com/s/1 ...

  2. 通过实现接口runnable实现多线程

    实现Runnable接口实现多线程的步骤(1)编写类实现Runnable接口(2)实现run(方法(3)通过Thread类的start(方法启动线程 静态代理模式Thread >代理 角色MyR ...

  3. 计算机网络(五),TCP四次挥手

    目录 1.TCP四次挥手详情 2.为什么会有TIME-WAIT状态 3.为什么需要四次握手才能断开连接 4.服务器出现大量CLOSE_WAIT的原因 五.TCP四次挥手 1.TCP四次挥手详情 (1) ...

  4. day_work_02

    day_work_02 ------Python是一个优雅的大姐姐 作业一 设计思路(四个if一个while) 首先我先把商品用列表加元组的形式保存,然后将商品遍历出来. 键盘输入薪水. (if)判断 ...

  5. Eclipse 开发环境修改及MAVEN配置

    Eclipse集成Maven配置 默认为 修改为所用版本 选择maven软件所在目录 勾选 默认连接仓库为 修改为

  6. Angular 文档中链接的修改路径

    在 Angular 文档程序中的左侧链接的修改路径在哪里? 如下图所示的修改路径. 左侧链接的修改路径在 angular-cn\aio\content\navigation.json 这个文件中. 你 ...

  7. EL表达式无效问题

    引起原因web.xml中: <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3// ...

  8. 我不熟悉的string类

    我不常用的string函数 多的不说,直接上: assign函数 string& assign(const char *s); //把字符串s赋给当前的字符串 string& assi ...

  9. Codeforces Round #584 - Dasha Code Championship - Elimination Round (rated, open for everyone, Div. 1 + Div. 2) G1. Into Blocks (easy version)

    题目:https://codeforc.es/contest/1209/problem/G1 题意:给你一个序列,要你进行一些操作后把他变成一个好序列,好序列的定义是,两个相同的数中间的数都要与他相同 ...

  10. python学习之路(8)

    定义函数 在Python中,定义一个函数要使用def语句,依次写出函数名.括号.括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用return语句返回. 我们以自定义一个求绝对值的my_ ...