Description

根据一些书上的记载,上帝的一次失败的创世经历是这样的:

第一天, 上帝创造了一个世界的基本元素,称做“元”。

第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。

第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。

第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。

如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。

然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……

然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。

至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?

上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。

你可以认为上帝从“α”到“θ”一共创造了\(10^9\)次元素,或\(10^{18}\)次,或者干脆\(\infty\)次

One word.

\(2^{2^{2^{....}}}mod\ p\)

Input

第一行一个整数\(T\),表示数据个数。

接下来\(T\)行,每行一个正整数\(p\),代表你需要取模的值

Output

\(T\)行,每行一个正整数,为答案对\(p\)取模后的值

直接套公式即可,证明的话目前在准备\(Noip\),将来证明.

\[a^x \equiv a^{x\ mod \ \phi(m) +\phi(m)}\ (mod \ m)
\]

所以这里递归求解即可.

求\(\phi()\)的话.我没有用线性筛求,选择了

\[\phi(x)=x \times \prod_{i=1}^{r} (1-\frac{1}{p_1})
\]

这里的\(p\)为质数.

代码

  1. #include<cstdio>
  2. #include<cctype>
  3. #define R register
  4. #define int long long
  5. using namespace std;
  6. inline void in(int &x)
  7. {
  8. int f=1;x=0;char s=getchar();
  9. while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
  10. while(isdigit(s)){x=x*10+s-'0';s=getchar();}
  11. x*=f;
  12. }
  13. inline int phi(int x)
  14. {
  15. int res=x;
  16. for(R int i=2;i*i<=x;i++)
  17. {
  18. if(x%i==0)
  19. {
  20. res=res/i*(i-1);
  21. while(x%i==0)x/=i;
  22. }
  23. }
  24. if(x>1)res=res/x*(x-1);
  25. return res;
  26. }
  27. int T;
  28. inline int ksm(int x,int y,int p)
  29. {
  30. int res=1;
  31. for(;y;y>>=1,x=x*x%p)
  32. if(y&1)res=res*x%p;
  33. return res;
  34. }
  35. inline int calc(int x)
  36. {
  37. if(x==1)return 0;
  38. return ksm(2,calc(phi(x))+phi(x),x);
  39. }
  40. signed main()
  41. {
  42. in(T);
  43. for(R int x;T;T--)
  44. {
  45. in(x);
  46. printf("%lld\n",calc(x));
  47. }
  48. }

扩展欧拉定理【p4139】上帝与集合的正确用法的更多相关文章

  1. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  4. Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925

    题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...

  5. luogu P4139 上帝与集合的正确用法(扩展欧拉定理)

    本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...

  6. 洛谷 P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  7. 【洛谷】P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的:  第一天,上帝创造了一个世界的基本元素,称做“元”.  第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  8. 洛谷P4139 上帝与集合的正确用法 拓欧

    正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...

  9. [洛谷P4139]上帝与集合的正确用法

    题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...

  10. Luogu P4139 上帝与集合的正确用法

    题目链接:Click here Solution: 这道题就考你会不会扩展欧拉定理,根据扩展欧拉定理可知 \[ a^b \equiv a^{(b\,mod\,\varphi(p))+\varphi(p ...

随机推荐

  1. flask利用session身份伪造

    想研究很久了,这次终于初步了解了flask session伪造(得知道密钥). python2和python3 session解密不一样,而且不都是base64,脚本https://github.co ...

  2. python基础实践(五)

    # -*- coding:utf-8 -*-# Author:sweeping-monk# -*-操作列表-*-Traverse_the_list = ['guanfu','xiaole','fang ...

  3. ftrace 简介

    ftrace 简介 ftrace 的作用是帮助开发人员了解 Linux 内核的运行时行为,以便进行故障调试或性能分析. 最早 ftrace 是一个 function tracer,仅能够记录内核的函数 ...

  4. HDU 2491

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Priest John's Busiest Day Time Limit: 4000/2000 MS (Java/Others)    ...

  5. c#中获得MD5字符串方法

    在用户登录的过程中,我们会遇到要查询对比用户名密码的是否存在或者是否正确,但是数据库中存放的是通过MD5加密的字符串,所有我们可以先把用户输入的用户名或者是密码先转为DM5字符串再跟数据库查出的MD5 ...

  6. Python中的多线程编程,线程安全与锁(二)

    在我的上篇博文Python中的多线程编程,线程安全与锁(一)中,我们熟悉了多线程编程与线程安全相关重要概念, Threading.Lock实现互斥锁的简单示例,两种死锁(迭代死锁和互相等待死锁)情况及 ...

  7. 【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并

    题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains inte ...

  8. BZOJ1823 [JSOI2010]满汉全席 【2-sat】

    题目 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过专家 ...

  9. angular.extend(dst,src)的简单示例

    自我认为这个方法跟angular.copy(src,dst)有点相似.在angular.extend({},src)时,就可以画等号.这个src只代表一个对象.代码如下:(注意这个src可以有多个对象 ...

  10. 转:Mysql explain

    转自:http://blog.csdn.net/zhuxineli/article/details/14455029(单纯学习而转) explain显示了MySQL如何使用索引来处理select语句以 ...