layout: post

title: 「kuangbin带你飞」专题二十 斜率DP

author: "luowentaoaa"

catalog: true

tags:

mathjax: true

- kuangbin

- 动态规划

- 斜率DP


传送门

A.HDU - 3507 Print Article

题意

就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M

让我们求这个费用的最小值。

题解

概率DP的入门题,把我搞得要死要活的。

首先dp[i]表示输出前i个的最小费用 很简单得得出一个方程

\[dp[i]=min(dp[i],dp[j]+(sum[i]-sum[j])^2\\1<=j<i
\]

其中sum[i]表示数字的前i项和,但是这个方程的复杂度是n^2 所以这时候就要用到斜率优化 ,ps:个人感觉斜率DP都用到了队列,来把前面绝对不优秀的项都出队,这样每次运算都只要在队列中找就行,而且每个元素只有一次出队和入队 所以复杂度只有N

首先假设在算dp[i]的 ,k<j<i,并且J点比K点优秀

那么

\[dp[j]+(sum[i]-sum[j])^2+M<=dp[k]+(sum[i]-sum[k])^2+M
\]

对上面方程分解整理得:

\[[(dp[j]+sum[j]^2)-(dp[k]+sum[k]^2)]÷2(sum[j]-sum[k])<=sum[i]
\]

注意正负号,不然会影响不等号的方向

\[Y(x)=dp[x]+sum[j]^2\\X(x)=2×sum[j]
\]

于是上面的式子变成斜率表达式

\[[Y(j)-Y(k)]/[X(j)-X(k)]<=sum[i]
\]

由于不等式右边的sum[i]随着i的增加而递增

所以我们另

\[g[j,k]=[Y(j)-Y(k)]/[X(j)-X(k)]
\]

1.如果上面的不等式成立 说明J比K优,而且随着i的增加上述不等式一定是成立的,也就是对于以后的i来说J都比K优秀,所以K是可以淘汰的

2.如果

\[g[J,K]>g[I,J]\\k<j<i
\]

那么J是可以淘汰的

假设g[I,J]<sum[i] 就是I比J优秀,那么J就没存在的价值

相反,如果g[I,J]>sum[i] 那么同样有g[J,K]>sum[I] 那么K比J优秀 所以J是可以淘汰的

所以这样相当于维护一个下凸的图形,斜率在增加,用队列维护

ps:以上都是抄bin巨的博客

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define pp pair<int,int>
const ll mod=998244353;
const int maxn=5e5+50;
const ll inf=0x3f3f3f3f3f3f3f3fLL;
int gcd(int a,int b){while(b){int t=a%b;a=b;b=t;}return a;}
int lcm(int a,int b){return a*b/gcd(a,b);}
int dp[maxn];
int sum[maxn];
int a[maxn];
int q[maxn];
int m,n;
int head,tail;
int getDP(int i,int j){
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
}
int getUP(int j,int k){
return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
}
int getDOWN(int j,int k){
return 2*(sum[j]-sum[k]);
}
int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
while(cin>>n>>m){
for(int i=1;i<=n;i++)cin>>a[i];
memset(sum,0,sizeof(sum));
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+a[i];
head=tail=0;
q[tail++]=0;
for(int i=1;i<=n;i++){
while(head+1<tail&&getUP(q[head+1],q[head])<=sum[i]*getDOWN(q[head+1],q[head]))
head++;
dp[i]=getDP(i,q[head]);
while(head+1<tail&&getUP(i,q[tail-1])*getDOWN(q[tail-1],q[tail-2])<=getUP(q[tail-1],q[tail-2])*getDOWN(i,q[tail-1]))
tail--;
q[tail++]=i;
}
cout<<dp[n]<<endl;
}
return 0;
}

「kuangbin带你飞」专题二十 斜率DP的更多相关文章

  1. 「kuangbin带你飞」专题二十二 区间DP

    layout: post title: 「kuangbin带你飞」专题二十二 区间DP author: "luowentaoaa" catalog: true tags: - ku ...

  2. 「kuangbin带你飞」专题十二 基础DP

    layout: post title: 「kuangbin带你飞」专题十二 基础DP author: "luowentaoaa" catalog: true tags: mathj ...

  3. 「kuangbin带你飞」专题十九 矩阵

    layout: post title: 「kuangbin带你飞」专题十九 矩阵 author: "luowentaoaa" catalog: true tags: mathjax ...

  4. 「kuangbin带你飞」专题十八 后缀数组

    layout: post title: 「kuangbin带你飞」专题十八 后缀数组 author: "luowentaoaa" catalog: true tags: - kua ...

  5. 「kuangbin带你飞」专题十四 数论基础

    layout: post title: 「kuangbin带你飞」专题十四 数论基础 author: "luowentaoaa" catalog: true tags: mathj ...

  6. 「kuangbin带你飞」专题十七 AC自动机

    layout: post title: 「kuangbin带你飞」专题十七 AC自动机 author: "luowentaoaa" catalog: true tags: - ku ...

  7. 「kuangbin带你飞」专题十五 数位DP

    传送门 A.CodeForces - 55D Beautiful numbers 题意 一个正整数是 漂亮数 ,当且仅当它能够被自身的各非零数字整除.我们不必与之争辩,只需计算给定范围中有多少个漂亮数 ...

  8. [kuangbin带你飞]专题二十 斜率DP

            ID Origin Title   20 / 60 Problem A HDU 3507 Print Article   13 / 19 Problem B HDU 2829 Lawr ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. 《Cracking the Coding Interview》——第9章:递归和动态规划——题目5

    2014-03-20 03:23 题目:给定一个字符串,输出其全排列. 解法:可以调用STL提供的next_permutation(),也可以自己写一个.对于这种看起来简单的题目,应该在能优化的地方, ...

  2. 【Kernal Support Vector Machine】林轩田机器学习技术

    考虑dual SVM 问题:如果对原输入变量做了non-linear transform,那么在二次规划计算Q矩阵的时候,就面临着:先做转换,再做内积:如果转换后的项数很多(如100次多项式转换),那 ...

  3. windows 下开发的 .netCore MVC 部署到 Linux(Mint)

    这两天在公司跟同事偶然聊到 .netCore,说到一些趋势什么的.但是说来说去自己也没试过在Linux 机子上部署过,所以就试一下. 尝试之前也在网上看了一些文章,包括 Linux 上.netCore ...

  4. eclipse把jar包引入项目的两种方法

    方法一: build path引入jar包 方法二: 把jar包放入lib文件夹 区别: 把jar包放入lib文件夹,以后把程序发给别人,别人可以直接运行而无需再自己添加jar包 总结: 1.有时即使 ...

  5. python学习总结---面向对象1

    面向对象 - 与面向过程对比 - 面向过程:数学逻辑的映射,学会做个好员工. - 面向对象:生活逻辑的映射,学会做个好领导. - 生活实例 - 类: 人 手机 电脑 - 对象: 习大大.普京 二狗的i ...

  6. springboot10 framwork

    一.Spring介绍 Spring 是位于业务逻辑层的框架. 优点很多(无缝对接前后层的框架.提供AOP的支持 , 和以前的 Sstruts . Hibernate 组合成了一套框架组合 SSH .现 ...

  7. android 自定义控件之下拉刷新源码详解

    下拉刷新 是请求网络数据中经常会用的一种功能. 实现步骤如下: 1.新建项目   PullToRefreshDemo,定义下拉显示的头部布局pull_to_refresh_refresh.xml &l ...

  8. over窗口函数进阶

    over窗口函数的其他灵活的用法.即,统计当前行的前N行及后N行数据.转自:https://blog.csdn.net/ck3207/article/details/84954511 先来看一下数据的 ...

  9. BZOJ1017 [JSOI2008]魔兽地图DotR 【树形dp + 背包dp】

    题目链接 BZOJ1017 题解 orz hzwer 树形dp神题 设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益 计算\( ...

  10. 牛客 2018NOIP 模你赛2 T2 分糖果 解题报告

    分糖果 链接:https://www.nowcoder.com/acm/contest/173/B 来源:牛客网 题目描述 \(N\) 个小朋友围成一圈,你有无穷个糖果,想把其中一些分给他们. 从某个 ...