首先定义:强联通分量是有向图G=(V, E)的最大结点集合,满足该集合中的任意一对结点v和u,路径vu和uv同时存在。

  kosaraju算法用来寻找强联通分量。对于图G,它首先随便找个结点dfs,求出每个节点最后一次访问的时间戳f(x),然后我们建立反图Gt,接着根据倒序的结束时间戳来dfs每个节点,每次dfs到的结点集合就是一个强联通分量。事实上这个算法的思想和拓扑排序类似。

  我们来证明它(注意这里面的图指原图,而不是反图):

引理:对于G中的两个强联通分量C和C’,若点u属于C,点v属于C',且存在边(u,v),那么f(C)> f(C')。

  证明应该很好想。。如果先访问C,那么一定会先访问完C'再访问C。如果先访问C’,因为强联通分量的性质,C一定不在C’的深度优先搜索树中。

推论:对于G中的两个强联通分量C和C’,若点u属于C,点v属于C',如果f(C)< f(C'),那么不可能存在边(u,v)

  因为若有边(u,v),访问C一定会访问到C',然后C'先退出。如果先访问C',f(C)> f(C')。

证明:若根据倒序的时间戳dfs结点,那么最后一个结点一定属于最后一个结束访问的强联通分量C'(因为C’被访问到的次序就是由最后一个结点的时间戳决定的),也就是f(C')>f(任意一个C)。根据推论,在原图中不可能存在边,从其它强联通分量连向它。也就是对于反图来说,从当前结点dfs只会dfs到最后一个结束访问的强连通分量。接着,倒序找到第二个没有被访问过的点,它属于倒数第二个结束访问的强联通分量,并且按原图来看,只可能有前面访问过的强联通分量向它连边,所以它只能访问自己所属的强联通分量。以此类推,可以证明算法的正确性。

  这个证明的重点在于:倒序来看,最先没有访问过的点属于新的待处理强联通分量。

强联通分量之kosaraju算法的更多相关文章

  1. 强联通分量(tarjan算法+算法简介)

    题目描述 ›对于一个有向图顶点的子集S,如果在S内任取两个顶点u和v,都能找到一条从u到v的路径,那么就称S是强连通的.如果在强连通的顶点集合S中加入其他任意顶点集合后,它都不再是强连通的,那么就称S ...

  2. 【POJ 1236 Network of Schools】强联通分量问题 Tarjan算法,缩点

    题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u ...

  3. Kosaraju算法---强联通分量

    1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对 ...

  4. 【强联通图 | 强联通分量】HDU 1269 迷宫城堡 【Kosaraju或Tarjan算法】

      为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明 ...

  5. POJ 2186 Popular cows(Kosaraju+强联通分量模板)

    题目链接:http://poj.org/problem?id=2186 题目大意:给定N头牛和M个有序对(A,B),(A,B)表示A牛认为B牛是红人,该关系具有传递性,如果牛A认为牛B是红人,牛B认为 ...

  6. POJ 2186-Popular Cows (图论-强联通分量Korasaju算法)

    题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认 ...

  7. 强联通分量-tarjan算法

    定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强 ...

  8. Tarjan 算法求割点、 割边、 强联通分量

    Tarjan算法是一个基于dfs的搜索算法, 可以在O(N+M)的复杂度内求出图的割点.割边和强联通分量等信息. https://www.cnblogs.com/shadowland/p/587225 ...

  9. Tarjan的强联通分量

    求强联通分量有很多种. <C++信息学奥赛一本通>  中讲过一个dfs求强联通分量的算法Kosdaraju,为了骗字数我就待会简单的说说.然而我们这篇文章的主体是Tarjan,所以我肯定说 ...

随机推荐

  1. hbase_学习_00_资源帖

    一.官方资料 1.官网:http://hbase.apache.org/ 2.官方文档:HBase 官方文档中文版 二.apache软件下载基地 1. Apache Software Foundati ...

  2. AngularJS-Basic(一)

    MVC:作为DataModel的$scope 依赖注入DI 模块化Module Service Filter Two way DateBinding Directive Unit Testing&am ...

  3. ajax stream 一边下载二进制数据一边处理

    最近有在做 stream 下载,并且边下载 stream 边处理功能.解析二进制的功能.最初参考了 flv.js 的 flv stream 下载处理功能,发现他并没有使用的 XMLHttpReques ...

  4. 关于VS中包含库、附加包含库、

    转载:https://blog.csdn.net/qing101hua/article/details/53841827 VS中C++的包含目录.附加包含目录和库目录和附加库目录的区别 对Visual ...

  5. linux下导入导出oracle的dmp文件

    1.导出dmp件 命令:exp QGTG/\"QGTG@orcl\" file=/usr/fuck.dmp exp QGTG/\"QGTG@orcl\" fil ...

  6. LG3533 [POI2012]RAN-Rendezvous

    2791: [Poi2012]Rendezvous Time Limit: 25 Sec  Memory Limit: 128 MBSubmit: 259  Solved: 160[Submit][S ...

  7. POJ3784:Running Median

    浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 题目传送门:http://poj.org/problem?id=3784 用一个"对顶堆& ...

  8. Linux如何打开执行脚本

    命令行下例如要打开startmysql.sh就直接 sh /目录/目录当前界面下就简单了在这个SH文件目录下打开终端 输入 sh startmysql.sh 回车或者对这个文件右键 打开 选择“在终端 ...

  9. ArrayList,Vector, LinkedList的存储性能和特性

    ArrayList和Vector都是使用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,它们都允许直接按序号索引元素,但是插入元素要涉及数组元素移动等内存操作,所以索引数据快而插入 ...

  10. Ajax调用后台方法报未定义

    需要在web.config中<system.webServer>节点下添加如下内容 <handlers> <add name="ajax" verb= ...