zoj3195(lca / RMQ在线)
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3195
题意: 给出一棵 n 个节点的带边权的树, 有 q 组形如 x, y, z 的询问, 输出 x, y, z之间的最短路径.
思路: 在纸上画下不难发现 x, y, z之间的最短路径就是 x, y, z 两两之间的最短路径和的一半.
我们可以通过 lca 模板求出 x, y, z 两两之间的最短路径, 然后再算下 x, y, z三点之间的最短路径即可.
这题应该是用 RMQ 在线比较好写一点, 用 tarjan 的话记录路径有点麻烦.
代码:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
using namespace std; const int MAXN = 5e4 + ;
struct node{
int v, w, next;
}edge[MAXN << ]; int dp[MAXN << ][];
int ver[MAXN << ], deep[MAXN << ], first[MAXN];
int dis[MAXN], head[MAXN], vis[MAXN], indx, ip; inline void init(void){
memset(vis, , sizeof(vis));
memset(head, -, sizeof(head));
indx = ;
ip = ;
} void addedge(int u, int v, int w){
edge[ip].v = v;
edge[ip].w = w;
edge[ip].next = head[u];
head[u] = ip++;
} void dfs(int u, int h){
vis[u] = ;
ver[++indx] = u;
deep[indx] = h;
first[u] = indx;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].v;
if(!vis[v]){
dis[v] = dis[u] + edge[i].w;
dfs(v, h + );
ver[++indx] = u;
deep[indx] = h;
}
}
} void ST(int n){
for(int i = ; i <= n; i++){
dp[i][] = i;
}
for(int j = ; ( << j) <= n; j++){
for(int i = ; i + ( << j) - <= n; i++){
int x = dp[i][j - ], y = dp[i + ( << (j - ))][j - ];
dp[i][j] = deep[x] < deep[y] ? x : y;
}
}
} int RMQ(int l, int r){
int len = log2(r - l + );
int x = dp[l][len], y = dp[r - ( << len) + ][len];
return deep[x] < deep[y] ? x : y;
} int LCA(int x, int y){
int l = first[x], r = first[y];
if(l > r) swap(l, r);
int pos = RMQ(l, r);
return ver[pos];
} int main(void){
bool flag = false;
int n, q, x, y, z;
while(~scanf("%d", &n)){
if(flag) puts("");
flag = true;
init();
for(int i = ; i < n; i++){
scanf("%d%d%d", &x, &y, &z);
addedge(x, y, z);
addedge(y, x, z);
}
dis[] = ;
dfs(, );
ST( * n - );
scanf("%d", &q);
while(q--){
scanf("%d%d%d", &x, &y, &z);
int lca1 = LCA(x, y);
int lca2 = LCA(x, z);
int lca3 = LCA(y, z);
int sol1 = dis[x] + dis[y] - * dis[lca1];
int sol2 = dis[x] + dis[z] - * dis[lca2];
int sol3 = dis[y] + dis[z] - * dis[lca3];
printf("%d\n", (sol1 + sol2 + sol3) >> );
}
}
return ;
}
zoj3195(lca / RMQ在线)的更多相关文章
- hdu3078(lca / RMQ在线)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3078 题意: 给出一棵 n 个点的带点权值的树, 接下来有 q 组形如 k, x, y 的输入, 若 ...
- hdu 3078(LCA的在线算法)
Network Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- 【Homework】LCA&RMQ
我校是神校,作业竟然选自POJ,难道不知道“珍爱生命 勿刷POJ”么? 所有注明模板题的我都十分傲娇地没有打,于是只打了6道题(其实模板题以前应该打过一部分但懒得找)(不过感觉我模板还是不够溜要找个时 ...
- POJ 2763 (LCA +RMQ+树状数组 || 树链部分) 查询两点距离+修改边权
题意: 知道了一颗有 n 个节点的树和树上每条边的权值,对应两种操作: 0 x 输出 当前节点到 x节点的最短距离,并移动到 x 节点位置 1 x val 把第 x 条边的权值改为 ...
- 算法详解(LCA&RMQ&tarjan)补坑啦!完结撒花(。◕ˇ∀ˇ◕)
首先,众所周知,求LCA共有3种算法(树剖就不说了,太高级,以后再学..). 1.树上倍增(ST表优化) 2.RMQ&时间戳(ST表优化) 3.tarjan(离线算法)不讲..(后面补坑啦!) ...
- LCA最近公共祖先 ST+RMQ在线算法
对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决. 这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...
- HDU 2586 How far away ?(经典)(RMQ + 在线ST+ Tarjan离线) 【LCA】
<题目链接> 题目大意:给你一棵带有边权的树,然后进行q次查询,每次查询输出指定两个节点之间的距离. 解题分析:本题有多重解决方法,首先,可用最短路轻易求解.若只用LCA解决本题,也有三种 ...
- Tourists Gym - 101002I LCA——dfs+RMQ在线算法
LCA(Least Common Ancestors),即最近公共祖先,是指这样一个问题:在有根树中,找出某两个结点u和v最近的公共祖先(另一种说法,离树根最远的公共祖先). 知识需求:1)RMQ的S ...
- hdu2874(lca / tarjan离线 + RMQ在线)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意: 给出 n 个顶点 m 条边的一个森林, 有 k 个形如 x y 的询问, 输出 x, ...
随机推荐
- php: xampp安装对应的phalcon版本(3.2.2-php5.6):比如redis-php5.6, php_igbinary-5.6
php: xampp安装对应的phalcon版本(3.2.2-php5.6):比如redis-php5.6, php_igbinary-5.6 一.php安装redis扩展 1.使用phpinfo ...
- Delphi操作XML - 冰雪傲骨
Delphi操作XMl,只要使用 NativeXml.我是用的版本是4..NativeXML的使用方法比较简单,但是功能很强大. XE2的话,要在simdesign.inc后面加上: // Delph ...
- 理解WCF(第二部分,部分參考他人)
該篇的主題:wcf到底是怎工作的? 一.什么是分布式: 首先看一张图: 由上图对比我们可以发现,区别就是前者把服务器放在了一台电脑上,而后者把服务器放在了多台电脑上.这样多台电脑处理起来的速度比一台电 ...
- 将double型小数点后面多余的零去掉
/** 函数功能:将数值小数点后面多余的零清空.* 参数描述:* [in] aSource - 输入的源数值:* [out] aDestination - 输出截取后的数值* ...
- hdu 3537 Daizhenyang's Coin(博弈-翻硬币游戏)
题意:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初始编号从0开始. 当N==1时,硬币为:正,先手必胜,所以sg[0]=1. 当N==2时,硬币为:反正,先手必赢,先手操作后 ...
- URAL1517Freedom of Choice(后缀数组)
Background Before Albanian people could bear with the freedom of speech (this story is fully describ ...
- ACM学习历程—HDU5407 CRB and Candies(数论)
Problem Description CRB has N different candies. He is going to eat K candies.He wonders how many co ...
- Javascript常用的设计模式详解
Javascript常用的设计模式详解 阅读目录 一:理解工厂模式 二:理解单体模式 三:理解模块模式 四:理解代理模式 五:理解职责链模式 六:命令模式的理解: 七:模板方法模式 八:理解javas ...
- bzoj 4372 烁烁的游戏 —— 动态点分治+树状数组
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4372 本以为和 bzoj3730 一样,可以直接双倍经验了: 但要注意一下,树状数组不能查询 ...
- Shiro 权限管理filterChainDefinitions过滤器配置
博客转载:http://blog.csdn.net/userrefister/article/details/47807075 /** * Shiro-1.2.2内置的FilterChain * @s ...