[知乎作答]·关于在Keras中多标签分类器训练准确率问题
[知乎作答]·关于在Keras中多标签分类器训练准确率问题
本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程。
一、问题描述
关于在CNN中文本预测sigmoid分类器训练准确率的问题?
对于文本多标签多分类问题,目标标签形如[ 0 0 1 0 0 1 0 1 0 1 ]。在CNN中,sigmoid分类器训练、测试的准确率的判断标准是预测准确其中一个标签即为预测准确还是怎样。如何使sigmoid分类器的准确率的判断标准为全部预测准确即为预测准确。有什么解决方案?
二、问题回复
问题中提出的解决多标签多分类问题的解决方法是正确的。但是要注意几点,keras里面使用这种方式的acc是二进制acc,会把多标签当做单标签计算。
什么意思呢?举个例子,输入一个样本训练,共有十个标签,其中有两个为1,而你预测结果为全部是0,这时你得到准确率为0.8。最后输出的ac是所有样本的平均。可以看出这个准确率是不可信的。
解决方法如下:重写acc评价指标,笔者自己写了一个多标签分类的acc,一个样本里,只有全部标签都对应上才acc为1,有一个不对就为0。
acc是keras输出acc,my_acc是多标签acc,因为使用了数据增强,valacc更高。
由于每个label的比例不同,又测试不同权重重写loss来对比。发现通过调整合适权重可以,相同参数下可以达到更优效果。
设置合适的权重值,val_acc上升了,val多标签acc也达到了更高。
关于如何设置合适权重,笔者还在实验中,可以关注下笔者的知乎和博客。后面实验结果会及时更新。
[知乎作答]·关于在Keras中多标签分类器训练准确率问题的更多相关文章
- keras中的一些小tips(一)
写这篇博客的原因主要是为了总结下在深度学习中我们常会遇到的一些问题,以及不知道如何解决,我准备把这个部分作为一个系列,为了让大家少走一些坑,对于本博客有什么错误,欢迎大家指出,下面切入正题吧. 1. ...
- 深度学习基础系列(十一)| Keras中图像增强技术详解
在深度学习中,数据短缺是我们经常面临的一个问题,虽然现在有不少公开数据集,但跟大公司掌握的海量数据集相比,数量上仍然偏少,而某些特定领域的数据采集更是非常困难.根据之前的学习可知,数据量少带来的最直接 ...
- 使用OKHttp模拟登陆知乎,兼谈OKHttp中Cookie的使用!
本文主要是想和大家探讨技术,让大家学会Cookie的使用,切勿做违法之事! 很多Android初学者在刚开始学习的时候,或多或少都想自己搞个应用出来,把自己学的十八般武艺全都用在这个APP上,其实这个 ...
- keras中VGG19预训练模型的使用
keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16.Xception.ResNet50.InceptionV3 4个. VGG19在keras中的定义: ...
- keras中的mini-batch gradient descent (转)
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 一. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看 ...
- keras中的模型保存和加载
tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. ...
- keras中的loss、optimizer、metrics
用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.lo ...
- Keras中RNN不定长输入的处理--padding and masking
在使用RNN based model处理序列的应用中,如果使用并行运算batch sample,我们几乎一定会遇到变长序列的问题. 通常解决变长的方法主要是将过长的序列截断,将过短序列用0补齐到一个固 ...
- 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...
随机推荐
- 一:安装Scala
Scala是一种类似Java的纯面向对象的函数式编程语言,由于函数具有明确的确定输入对确定输出的关系,所以适合推理和计算,一切函数都可以看成一系列的计算组成,另外由于Scala函数是没有副作用和透明的 ...
- wpf staticresource 是不允许向前引用(forward reference)的
不允许向前引用(forward reference)在C/C++中中很常见,即在语法上,未定义变量.类之前,不能使用. 没想到wpf中的wpf staticresource也遵循这种规则.资源字典中, ...
- java web基础学习 Forward和Redirect区别
Forward和Redirect代表了两种请求转发方式:直接转发和间接转发.对应到代码里,分别是RequestDispatcher类的forward()方法和HttpServletRequest类的s ...
- 请问两个div之间的上下距离怎么设置
转自:https://zhidao.baidu.com/question/344630087.html 楼上说的是一种方法,yanzilisan183 <div style="marg ...
- linux日常管理-rsync后台服务方式-2
把本地的数据拷贝到远程 这里是个错误,read only.只允许读,不允许写. 改一下远程机器的配置文件 把read only改为no 拷贝到远程成功 tree一下远程机器的目录 ////////// ...
- MyBatis构建sql时动态传入表名以及字段名
今天项目需要用到动态表名,找到这一篇文章,亲测可用 用了mybatis很长一段时间了,但是感觉用的都是比较基本的功能,很多mybatis相对ibatis的新功能都没怎么用过.比如其内置的注解功能之类的 ...
- UI面试题(1)
1.请创建一个数组对象[@“ad”,@“bc”,@“sdf”,@“yu”],并且对该数组对象进行排序(使用冒泡排序); NSMutableArray *array = [NSMutableArraya ...
- Maven的pom实例
该pom中包含了一些我认为会需要的东西,并且加了注释.可以根据需求适当删减. 包含了spring-mvc , junit,hibernate验证,json,apache-commons组件 还有 co ...
- pig入门教程(2)
本文可以让刚接触pig的人对一些基础概念有个初步的了解. 本文的大量实例都是作者Darran Zhang(website: codelast.com)在工作.学习中总结的经验或解决的问题,并且添加了较 ...
- GEO(Gene Expression Omnibus):高通量基因表达数据库
Gene Expression Omnibus(GEO)是一个公共存储库,可以存档和自由分发由科学界提交的全套微阵列,新一代测序和其他形式的高通量功能基因组数据. 除数据存储外,还提供一系列基于Web ...