Luogu 2149 [SDOI2009]Elaxia的路线
感觉这题可以模板化。
听说spfa死了,所以要练堆优化dijkstra。
首先对$x_{1},y_{1},x_{2},y_{2}$各跑一遍最短路,然后扫一遍所有边看看是不是同时在两个点的最短路里面,如果是的话就把这条边加到一张新图中去,因为最短路一定没有环,所以最后造出来的这张新图一定是一个$DAG$,dp一遍求最长链即为答案。
考虑一下怎么判断一条边是否在最短路里,设这条边连接的两个点是$x$,$y$,边权是$v$,如果它在最短路里面,那么有$dis(x_{1}, x) + v + dis(y_{1}, y) == dis(x_{1}, y_{1})$并且$dis(x_{2}, x) + v + dis(y_{2}, y) == dis(x_{2}, y_{2})$,注意第二个条件中$x$和$y$可以交换。加边的时候注意维持一下$DAG$的形态,可以把$x$和$y$到$x_{1}$的距离小的向距离大的连边。
时间复杂度$O(nlogn)$,堆优化dij是瓶颈。
感觉写得很长。
Code:
#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
using namespace std;
typedef pair <int, int> pin; const int N = ;
const int M = 3e6 + ;
const int inf = 0x3f3f3f3f; int n, m, inx[M], iny[M], inv[M], deg[N], f[N], ans = ;
int c1, c2, c3, c4, tot = , head[N], dis[N], d[][N];
bool vis[N]; struct Edge {
int to, nxt, val;
} e[M << ]; inline void add(int from, int to, int val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} inline void swap(int &x, int &y) {
int t = x; x = y; y = t;
} priority_queue <pin> Q;
void dij(int st) {
memset(dis, 0x3f, sizeof(dis));
memset(vis, , sizeof(vis));
Q.push(pin(dis[st] = , st));
for(; !Q.empty(); ) {
int x = Q.top().second; Q.pop();
if(vis[x]) continue;
vis[x] = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(dis[y] > dis[x] + e[i].val) {
dis[y] = dis[x] + e[i].val;
Q.push(pin(-dis[y], y));
}
}
}
} inline void chkMax(int &x, int y) {
if(y > x) x = y;
} int dfs(int x) {
if(vis[x]) return f[x];
vis[x] = ;
int res = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
chkMax(res, dfs(y) + e[i].val);
}
return f[x] = res;
} int main() {
read(n), read(m), read(c1), read(c2), read(c3), read(c4);
for(int i = ; i <= m; i++) {
read(inx[i]), read(iny[i]), read(inv[i]);
add(inx[i], iny[i], inv[i]), add(iny[i], inx[i], inv[i]);
} dij(c1); memcpy(d[], dis, sizeof(d[]));
dij(c2); memcpy(d[], dis, sizeof(d[]));
dij(c3); memcpy(d[], dis, sizeof(d[]));
dij(c4); memcpy(d[], dis, sizeof(d[])); /* for(int i = 1; i <= n; i++)
printf("%d ", d[0][i]);
printf("\n");
for(int i = 1; i <= n; i++)
printf("%d ", d[1][i]);
printf("\n");
for(int i = 1; i <= n; i++)
printf("%d ", d[2][i]);
printf("\n");
for(int i = 1; i <= n; i++)
printf("%d ", d[3][i]);
printf("\n"); */ tot = ; memset(head, , sizeof(head));
for(int i = ; i <= m; i++) {
int x = inx[i], y = iny[i], v = inv[i];
if(d[][x] + v + d[][y] == d[][c2])
if(d[][y] + v + d[][x] == d[][c4] || d[][x] + v + d[][y] == d[][c4]) {
if(d[][x] < d[][y]) {
add(x, y, v);
deg[y]++;
} else {
add(y, x, v);
deg[x]++;
}
} swap(x, y);
if(d[][x] + v + d[][y] == d[][c2])
if(d[][y] + v + d[][x] == d[][c4] || d[][x] + v + d[][y] == d[][c4]) {
if(d[][x] < d[][y]) {
add(x, y, v);
deg[y]++;
} else {
add(y, x, v);
deg[x]++;
}
}
} memset(vis, , sizeof(vis));
for(int i = ; i <= n; i++)
if(deg[i] == && !vis[i]) dfs(i); /* for(int i = 1; i <= n; i++)
printf("%d ", f[i]);
printf("\n"); */ for(int i = ; i <= n; i++)
chkMax(ans, f[i]); printf("%d\n", ans);
return ;
}
Luogu 2149 [SDOI2009]Elaxia的路线的更多相关文章
- Luogu P2149 [SDOI2009]Elaxia的路线(最短路+记忆化搜索)
P2149 [SDOI2009]Elaxia的路线 题意 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们必须合理地安排两个人在一起的 ...
- 洛谷 2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的 ...
- BZOJ1880或洛谷2149 [SDOI2009]Elaxia的路线
BZOJ原题链接 洛谷原题链接 显然最长公共路径是最短路上的一条链. 我们可以把最短路经过的边看成有向边,那么组成的图就是一张\(DAG\),这样题目要求的即是两张\(DAG\)重合部分中的最长链. ...
- Luogu P2149 [SDOI2009]Elaxia的路线 | 图论
题目链接 题解: 题面中给了最简洁清晰的题目描述:"求无向图中,两对点间最短路的最长公共路径". 对于这个问题我们可以先考虑图中的哪些边对这两对点的最短路产生了贡献. 比如说下面这 ...
- BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )
找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
- 洛谷 P2149 [SDOI2009]Elaxia的路线 解题报告
P2149 [SDOI2009]Elaxia的路线 题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia ...
- 【BZOJ 1880】 [Sdoi2009]Elaxia的路线 (最短路树)
1880: [Sdoi2009]Elaxia的路线 Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. ...
- BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2049 Solved: 805 题目链接:https ...
随机推荐
- Nodejs-RESTFul架构
请求方法 一般会严格要求请求方法及其释义,下面给出常用的请求方法 如果请求头中存在 X-HTTP-Method-Override 或参数中存在 _method(拥有更高权重),且值为 GET, POS ...
- canvas基础学习(三)
一.图片加载控件 在canvas效果制作中常常要使用多张图片,为了提高用户体验,需要给用户提供一个图片加载中的过度页面效果.过度效果,我在项目中使用的是Sonic.js,它在git上的地址为https ...
- SFTP服务器使用指南(1)——安装搭建freeSSHd
为什么选择freeSSHd 此软件免费 功能非常丰富且强大,同时支持软件用户.本地系统用户和域用户验证 对各用户选择性开放SFTP,Telnet, Tunneling服务 功能和服务完全不受限制的使用 ...
- 利用HTML5开发Android笔记(下篇)
资源来自于www.mhtml5.com 杨丰盛老师成都场的PPT分享 一个很简明的demo 可以作为入门基础 学习的过程中做了点笔记 整理如下 虽然内容比较简单 但是数量还是比较多的 所以分了3篇 ( ...
- I.MX6 make menuconfig进入x86模式
/************************************************************************ * I.MX6 make menuconfig进入x ...
- NOIP模拟题 栅栏
题目大意 给定一个$n\times m$的网格图,每次会选择一块矩形沿着网格线铺上栅栏,或者拆除之前铺的栅栏,或者询问两个格子能否不经过栅栏直接到达. 保证栅栏没有重叠或交叉,删去的栅栏删除前一定存在 ...
- UVA - 10570 Meeting with Aliens (置换的循环节)
给出一个长度不超过500的环状排列,每次操作可以交换任意两个数,求把这个排列变成有序的环状排列所需的最小操作次数. 首先把环状排列的起点固定使其成为链状排列a,枚举排好序时的状态b(一种有2n种可能) ...
- LeetCode 293. Flip Game
原题链接在这里:https://leetcode.com/problems/flip-game/description/ 题目: You are playing the following Flip ...
- 洛谷【P2669】NOIP2015普及组 T1金币
我对模拟的理解:http://www.cnblogs.com/AKMer/p/9064018.html 题目传送门:https://www.luogu.org/problemnew/show/P266 ...
- PHPExcel如何把该列的值设置为文本无科学计数?
$obj_sheet->setCellValueExplicit($cells[$_counter].$i, (isset($val[$_value_key]) ...