51Nod 1048 整数分解为2的幂 V2
分析:
$O(N)$和$O(NlogN)$的做法很简单就不写了...%了一发神奇的$O(log^3n*$高精度$)$的做法...
考虑我们只能用$2$的整次幂来划分$n$,所以我们从二进制的方面去考虑划分...
定义$g[i][j]$代表的是前$i$个$1$划分完成并且最大的数为$2^j$的方案数,我们枚举前$i-1$个$1$的划分方案来转移:
$g[i][j]=\sum _{k=0}^{j} g[i-1][k]*f[x-k][j-k]$,$x$代表的是第$i$个$1$在第$x$位,$f[i][j]$代表$2^i$的划分方案,并且最大的数字为$2^j$,因为我们要限制$2^x$的划分必须比$2^k$大,所以我们把$2^x$和$2^j$都除以一个$2^k$...
然后$f$数组的转移也是差不多的...
$f[i][j]=\sum_{k=0}^{j} f[i-1][k]*f[i-k-1][j-k]$...
我的高精度写的常数贼大~~~
就当我A了吧...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std; const int maxn=100+5,maxm=200+5,mod=1e9; int tmp; char s[maxn]; struct M{ int len,a[maxm],b[maxm]; inline void init(void){
memset(a,0,sizeof(a));
} friend M operator + (M x,M y){
M res;res.len=max(x.len,y.len);res.init();
for(int i=1;i<=res.len;i++){
res.a[i]+=x.a[i]+y.a[i];
if(res.a[i]>=mod)
res.a[i+1]=1,res.a[i]-=mod;
}
if(res.a[res.len+1]>0) res.len++;
return res;
} friend M operator * (M x,M y){
M res;res.init();
for(int i=1;i<=x.len;i++)
for(int j=1;j<=y.len;j++){
res.a[i+j]+=(res.a[i+j-1]+1LL*x.a[i]*y.a[j])/mod;
res.a[i+j-1]=(res.a[i+j-1]+1LL*x.a[i]*y.a[j])%mod;
}
res.len=x.len+y.len;
while(res.len>1&&res.a[res.len]==0) res.len--;
return res;
} inline void print(void){
memcpy(b,a,sizeof(a));
printf("%d",a[len]);
for(int i=len-1;i;i--)
for(int j=1e8;j;j/=10)
printf("%d",a[i]/j),a[i]%=j;
memcpy(b,a,sizeof(b));
puts("");
} }n,m,ans,f[maxn][maxn],g[maxn][maxn]; signed main(void){
scanf("%s",s);tmp=n.len=strlen(s);n.len=tmp/9+1;
for(int i=1,j;i<=tmp;i++){
j=(tmp-i)/9;
n.a[j+1]=n.a[j+1]*10+s[i-1]-'0';
}
f[0][0].a[1]=1;f[0][0].len=1;
for(int i=1;i<=99;i++){
f[i][i].a[1]=1;f[i][i].len=1;
for(int j=0;j<i;j++)
for(int k=0;k<=j;k++)
f[i][j]=f[i][j]+f[i-1][k]*f[i-1-k][j-k];
}
int tot=0;
for(int i=0;i<=99;i++){
if(n.a[1]&1){
tot++;
if(tot==1)
for(int j=0;j<=i;j++)
g[tot][j]=f[i][j];
else
for(int j=0;j<=i;j++)
for(int k=0;k<=j;k++)
g[tot][j]=g[tot][j]+g[tot-1][k]*f[i-k][j-k];
}
int lala=0;
for(int j=n.len;j;j--){
int tmp=n.a[j];
n.a[j]=(1LL*lala*mod+tmp)/2;
lala=(1LL*lala*mod+tmp)%2;
}
}
for(int i=0;i<=99;i++) ans=ans+g[tot][i];
ans.print();
return 0;
}
By NeighThorn
51Nod 1048 整数分解为2的幂 V2的更多相关文章
- [51nod1383&1048]整数分解为2的幂:DP
算法一 分析 \(f[x]=f[x-1]+f[x/2] \times [x \equiv 0 \mod 2],O(n)\) 代码 n=int(input()) f=[0]*(n+5) f[0]=1 m ...
- [2022-2-18] OICLASS提高组模拟赛2 A·整数分解为2的幂
题目链接 问题 A: 整数分解为 2 的幂 题目描述 任何正整数都能分解成 2 的幂,给定整数 N,求 N 的此类划分方法的数量!由于方案数量较大,输出 Mod 1000000007 的结果. 比如 ...
- 51Nod 1048 1383 整数分解为2的幂
任何正整数都能分解成2的幂,给定整数N,求N的此类划分方法的数量! 比如N = 7时,共有6种划分方法. 7=1+1+1+1+1+1+1 =1+1+1+1+1+2 =1+1+1+2+2 ...
- 51 NOD 1383 整数分解为2的幂
设f[i]为i这个数的划分方案,则: 1.i是奇数的时候,最前面只能放1,所以f[i] = f[i-1] 2.i是偶数的时候,最前面可以放1也可以不放1,而不放1的时候数列都是偶数所以 f[i] = ...
- 整数(质因子)分解(Pollard rho大整数分解)
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- 整数分解 && 质因数分解
输入整数(0-30)分解成所有整数之和.每四行换行一次. 一种方法是通过深度优先枚举出解.通过递归的方式来实现. #include <stdio.h> #include <strin ...
- POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)
题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd lcm/gcd=a/gcd*b/gcd 可知a/gc ...
- POJ 1811 Prime Test (Pollard rho 大整数分解)
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...
随机推荐
- PLC状态机编程第三篇-RS信号处理
我们今天简要介绍RS指令在状态机中怎么处理的.有些设备按下停止按钮后,没有马上停止,而是到原点后才停止,那么这种情况在状态机中如何表示呢?我们以案例说明之,下面是我们的控制描述. 控制描述 小车从左位 ...
- 20145202马超 《Java程序设计》第三周学习总结
************************http://git.oschina.net/tuolemi/java这是git的那个网址********************* 函数的重载:在同一 ...
- C17K:Lying Island
链接 题意: 有n个人,每个人可能会说: 第x个人是好人/坏人 如果第x个人是好人/坏人,则第y个人是好人/坏人 思路: 状压dp,首先每个人所说的人只能是他前面10个人,所以对于第i个人记录下,他前 ...
- MySQL之查询性能优化(一)
为什么查询速度会慢 通常来说,查询的生命周期大致可以按照顺序来看:从客户端,到服务器,然后在服务器上进行解析,生成执行计划,执行,并返回结果给客户端.其中“执行”可以认为是整个生命周期中最重要的阶段, ...
- 4.bootstrap的form表单的form-group和form-control的区别与联系
1. form-group一般用于div form-control一般用于置于div中的标签元素,为了让控件在各种表单风格中样式不出错,需要添加类名“form-control”,如: <form ...
- python开发记录第一篇
1. 安装pyCharm,下载地址https://www.jetbrains.com/pycharm/ 2. 注册license,修改windwos系统hosts,文件路径为:C:\Windows\S ...
- Java 基本数据类型总结一
Java基本数据类型总结一 基本类型,或者叫做内置类型,是JAVA中不同于类的特殊类型.它们是我们编程中使用最频繁的类型.java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变 ...
- 剑指Offer - 九度1391 - 顺时针打印矩阵
剑指Offer - 九度1391 - 顺时针打印矩阵2013-11-24 04:55 题目描述: 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下矩阵: 1 2 3 4 ...
- 《Cracking the Coding Interview》——第8章:面向对象设计——题目5
2014-04-23 18:42 题目:设计一个在线阅读系统的数据结构. 解法:这题目太大了,我的个亲娘.显然你不可能一次加载一整本书,做到单页纸加载的粒度是很必要的.为了读书的连贯效果,预取个几页也 ...
- WPF and Silverlight.ComboBox 如何通过 Binding IsDropDownOpen 实现下拉菜单展开
In the WPF example the Popup and the ToggleButton (the arrow on the right) are bound with the proper ...