F. Divisibility
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Imp is really pleased that you helped him. But it you solve the last problem, his gladness would raise even more.

Let's define  for some set of integers  as the number of pairs ab in , such that:

  • a is strictly less than b;
  • a divides b without a remainder.

You are to find such a set , which is a subset of {1, 2, ..., n} (the set that contains all positive integers not greater than n), that .

Input

The only line contains two integers n and k .

Output

If there is no answer, print "No".

Otherwise, in the first line print "Yes", in the second — an integer m that denotes the size of the set  you have found, in the second line print m integers — the elements of the set , in any order.

If there are multiple answers, print any of them.

Examples
input

Copy
3 3
output
No
input

Copy
6 6
output
Yes
5
1 2 4 5 6
input

Copy
8 3
output
Yes
4
2 4 5 8
Note

In the second sample, the valid pairs in the output set are (1, 2), (1, 4), (1, 5), (1, 6), (2, 4), (2, 6). Thus, .

In the third example, the valid pairs in the output set are (2, 4), (4, 8), (2, 8). Thus, .

题目大意:在1~n中选任意个数组成一个集合I,定义f(I) = I中的每个数被I中的其它的多少个数整除的和.已知f(I) = k,求I.

分析:全程凭感觉做的一道题......

   令d(i)表示i被1~i-1这些数整除的数的个数,e(i) = Σd(j) (1 ≤ j ≤ i).首先需要猜出一个结论:当e(n) ≥ k时,是肯定有解的. 更近一步,当e(i) ≥ k时,肯定有解,那么就可以把>i的数给丢掉.

   假设e(pos) ≥ k,k变成e(pos) - k,将pos / 2 + 1到pos的d全都加入优先队列中,每次弹出最大的d,如果k≥d,则k -= d,并丢掉这个d对应的i.这是基本做法,为什么只需要pos / 2 + 1到pos的数就可以了呢?

   如果考虑的数≤pos / 2,那么删掉这个数的贡献就不只是d,因为[pos / 2 + 1,pos]中有数是它的倍数,这个不好考虑.那为什么只考虑pos / 2 + 1到pos的数就一定最后能让k变成0呢?整除数m的数的个数是O(m ^ (1/3))的.而>m/2并且<m的质数的个数大约是个,一般后者的数量都比前者大,而质数的贡献是1,所以只删去质数就能满足要求,有极少数的数会出现后者比前者小,由于差的非常小,按照上述方法贪心地删就好了.

   如果不按照d来考虑贡献,可以考虑只删除1~pos的质数,对于质数i,它的贡献是[pos / i],删除当前质数不影响其他质数的贡献,其实和上面的贪心方法差不多.

   我曾经考虑过正向构造,每次考虑添加哪个数进去,但是贡献不好算,而且想不到什么好的策略. 这个方法就是把可能的数摆在你的面前,你要在里面删数,不仅要考虑能否满足要求,并且还要考虑贡献的计算问题. 挺考验数学直觉的.

#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int n,k,sum[],d[],cur,leftt,vis[],ans;
priority_queue <pair<int,int> >q; int main()
{
scanf("%d%d",&n,&k);
for (int i = ; i <= n; i++)
for (int j = i * ; j <= n; j += i)
d[j]++;
for (int i = ; i <= n; i++)
{
sum[i] = sum[i - ] + d[i];
if (sum[i] >= k)
{
leftt = sum[i] - k;
cur = i;
break;
}
}
if (!cur)
puts("No");
else
{
puts("Yes");
if (leftt == )
{
printf("%d\n",cur);
for (int i = ; i <= cur; i++)
printf("%d ",i);
}
else
{
for (int i = cur / + ; i <= cur; i++)
q.push(make_pair(d[i],i));
while (leftt)
{
pair <int,int> temp = q.top();
q.pop();
if (leftt >= temp.first)
{
leftt -= temp.first;
vis[temp.second] = ;
}
}
for (int i = ; i <= cur; i++)
if (!vis[i])
ans++;
printf("%d\n",ans);
for (int i = ; i <= cur; i++)
if (!vis[i])
printf("%d ",i);
}
} return ;
}

Codeforces 922.F Divisibility的更多相关文章

  1. Codeforces 959 F. Mahmoud and Ehab and yet another xor task

    \(>Codeforces\space959 F. Mahmoud\ and\ Ehab\ and\ yet\ another\ xor\ task<\) 题目大意 : 给出一个长度为 \ ...

  2. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  3. Codeforces 731 F. Video Cards(前缀和)

    Codeforces 731 F. Video Cards 题目大意:给一组数,从中选一个数作lead,要求其他所有数减少为其倍数,再求和.问所求和的最大值. 思路:统计每个数字出现的个数,再做前缀和 ...

  4. Codeforces 797 F Mice and Holes

    http://codeforces.com/problemset/problem/797/F F. Mice and Holes time limit per test             1.5 ...

  5. Codeforces 622 F. The Sum of the k-th Powers

    \(>Codeforces \space 622\ F. The\ Sum\ of\ the\ k-th\ Powers<\) 题目大意 : 给出 \(n, k\),求 \(\sum_{i ...

  6. Codeforces 379 F. New Year Tree

    \(>Codeforces \space 379 F. New Year Tree<\) 题目大意 : 有一棵有 \(4\) 个节点个树,有连边 \((1,2) (1,3) (1,4)\) ...

  7. Codeforces 538 F. A Heap of Heaps

    \(>Codeforces \space 538 F. A Heap of Heaps<\) 题目大意 :给出 \(n\) 个点,编号为 \(1 - n\) ,每个点有点权,将这些点构建成 ...

  8. codeforces 825F F. String Compression dp+kmp找字符串的最小循环节

    /** 题目:F. String Compression 链接:http://codeforces.com/problemset/problem/825/F 题意:压缩字符串后求最小长度. 思路: d ...

  9. [codeforces 618 F] Double Knapsack (抽屉原理)

    题目链接:http://codeforces.com/contest/618/problem/F 题目: 题目大意: 有两个大小为 N 的可重集 A, B, 每个元素都在 1 到 N 之间. 分别找出 ...

随机推荐

  1. linux下Tomcat配置提示权限不够解决办法

    在终端输入命令 sudo chmod -R 777 /opt/Tomcat,那么Tomcat文件夹和它下面的所有子文件夹的属性都变成了777(读/写/执行权限)

  2. 在React Native中集成热更新

    最近,在项目DYTT集成了热更新,简单来说,就是不用重新下载安装包即可达到更新应用的目的,也不算教程吧,这里记录一下. 1.热更新方案 目前网上大概有两个比较广泛的方式,分别是 react-nativ ...

  3. PHP 微信公众号之客服完整讲解

    //获取access_token private static function get_access_token($app_id) { $getAuthorizerInfo = wx_auth::g ...

  4. selenium库:自动化测试工具

    爬虫中主要用来解决Javascript渲染问题 1.声明浏览器对象: from selenium import webdriver browser = webdriver.浏览器名() 2.访问页面: ...

  5. C语言进阶——分支语句06

    if分支语句分析: if语句用于根据条件选择执行语句 else不能独立存在且总是与在它之前的最近if相匹配 esle语句后可以连接其他if语句 用法如下: if(condition) { //stat ...

  6. python基础之布尔运算、集合

    布尔值 True 真 False 假 所有的数据类型都自带布尔值,数据只有在0,None和空的时候为False. print(bool()) print(bool()) print(bool('')) ...

  7. 远程 RADIUS 服务器组

    远程 RADIUS 服务器组 远程 RADIUS 服务器组是包含一个或多个 RADIUS 服务器的已命名的组.IAS 用作 RADIUS 请求消息的 RADIUS 代理时,必须指定远程 RADIUS ...

  8. USACO Section1.4 Mother's Milk 解题报告

    milk3解题报告 —— icedream61 博客园(转载请注明出处)---------------------------------------------------------------- ...

  9. 【vim环境配置】在centos6.4上配置vim的一些零碎记录

    上一篇日志已经step by step地实录了如何在本机mac上配置vim开发环境已经各种插件. 有了一定经验之后,开始在实验室远程server上centos6.4的环境下配置vim环境. 这台机器是 ...

  10. 【Linear Models for Binary Classification】林轩田机器学习基石

    首先回顾了几个Linear Model的共性:都是算出来一个score,然后做某种变化处理. 既然Linear Model有各种好处(训练时间,公式简单),那如何把Linear Regression给 ...