【Matrix Factorization】林轩田机器学习技法
在NNet这个系列中讲了Matrix Factorization感觉上怪怪的,但是听完第一小节课程就明白了。
林首先介绍了机器学习里面比较困难的一种问题:categorical features
这种问题的特征就是一些ID编号这类的,不是numerical的。
如果要处理这种情况,需要encoding from categorical to numerical
最常用的一种encoding方法就是binary vector encoding(也是实习工作中用过的路子),将binary vector作为输入。
联系之前学过的模型,可以用NNet来学习这种映射关系。
但是,binary vector毕竟不是numerical vector,由于每个输入只在一个维度上是1,其余都是0,因此,NNet中的tanh就没啥必要了(因为每个输入数据x喂到每个tanh的只有一个维度的值,输出也只受这个一个维度的值影响,且tanh是关于x是单调的)。
所以,有了如下的简化版的Linear Network,即把tanh换成了Σ求和。
这里对符号进行一下说明:
1)V是d×N的矩阵(d是hidden unit的个数,N是user的个数):V的每个column代表每个user对hidden unit的权重。
2)W’是M×d的矩阵(M是movie的个数):M的每个row代表的是每个movie关于hidden unit的权重。
考虑每个xn是binary vector,则h(xn) = W’vn(动笔推导一下就OK了):Linear Network的输出h(xn)是一个M维的vector,代表每个user对于各个movie的rating。
综上,Linear Network对于recommender system来说,需要学习的一个是V矩阵(user-hidden unit或latent factor),另一个是W矩阵(item-hidden或latent factor)。
在介绍学习方法之前,林重新整理了一下Linear Network问题。
linear network对于m-th movie来说:就是有一个对应的Wm'来对转换后的x进行线性加权hm(x) = Wm' fi(x)。
因此,学习目标也了然了:
1)transform的系数矩阵
2)linear model的系数矩阵
综上,由于Linear Network的输入是binary vector的,因此对原Linear Network问题做一个变形:rnm = Wm'Vn → R = V‘W,即转化成一个matrix factorization问题。(个人非常喜欢这段motivation的讲解,matrix factorization为什么在NNet这部分出现也理解了)
关于Linear Network转化成Matrix Factorization问题的推导,按照个人理解,我再多写两笔:
h(x) = W'Vx (在前面的PPT中找)
= (Vx)'W (由于h(x)是一个向量所以颠倒一下没关系了,输出h(x)由原来的列向量变成了行向量了,但对应位置的值不变)
= x'V'W ((AB)'=B'A', 矩阵转置运算性质)
则h(X) = X'V'W (按行补上所有的输入xn=1...N)
= I(N) V'W (X’矩阵每一行代表一个输入的binary vector,这里按照编号顺序排布X,所以X'就是一个单位阵喽)
= V'W (原始的Linear Network问题转化为Basic Matrix Factorization问题了)
并且,这种分解是可以加上些物理意义的:可以把每个hidden unit当成是一种隐含特征(喜剧、动作...)。V和W代表user与movie与hidden unit的关系。
下面讲求解模型的方法:
最优化的问题有两组变量,可以模仿K-means学过的alternating minimization模式:轮流最优化,即alternating least square algorithm。
1)固定V(相当于user对hidden unit的权重固定):需要挨个学习Wm(m=1,...,M);学习每个Wm的时候,喂进去的是<V, Rm-th column)> n=1,...M,详单与少了bias的linear regression
这里容易产生一个思维误区:矩阵大部分的位置上都是空的,这些位置的值在linear regression中怎么处理呢?
想了一下,这些值根本就不在linear regression的求解范围中(注意,只对有rating评分的那些点计算误差)
2)V与M的关系类似,学的方法也类似,不赘述
整个Alternating Least Squares的算法流程如下:
1)初始化的时候randomly一下
2)由于Ein是有下限的,所以能converge
这里,林还提了一句:Linear Autoencoder(PCA)是一种特殊的Matrix Factorization。
另一种求解Matrix Factorzation的方法,也是更常用的一种就是Stochastic Gradient Descent方法。
在最优化Ein的时候,不考虑前面的常数项,考虑后面的式子。
由于有两个变量,因此需要分别求梯度。可以自行查阅SGD的算法,这里就是最简单的求导,不再赘述。
这里多提一句:为啥对Vn的求导只用考虑 (rnm - Wm'Vn)²这一项呢?
因为,这里求导有两个变量,Vn和Wm:
1)不含有Vn的项自然不用考虑了
2)含有Vn同时含有W1,...WM的项中:
a. 如果是batch gradient,这些含有Vn的项都应该考虑(挨个求出来,再取个平均这类的)
b. 如果是stochastic gradient的方法,只需要考虑Wm这一个点即可了(前提是rnm有值),所以梯度的式子也就留下这一项了
(个人感觉细节还是扣清楚好,有助于理解复杂的问题)
这里有一个讲梯度算法并行化的文章:http://www.superchun.com/machine-learning/parallel-matrix-factorization.html
总体的算法流程如下:
最后,林还稍稍讲了一下KDD cup中的SGD使用trick:
这个trick叫time-deterministic GD : 即,在GD的最后一轮,不再用随机选点的策略了,改用选择时间轴上最近的几个点。这样对于有时间属性的数据,可以达到更好的效果。
【Matrix Factorization】林轩田机器学习技法的更多相关文章
- 【Radial Basis Function Network】林轩田机器学习技法
这节课主要讲述了RBF这类的神经网络+Kmeans聚类算法,以及二者的结合使用. 首先回归的了Gaussian SVM这个模型: 其中的Gaussian kernel又叫做Radial Basis F ...
- 【Deep Learning】林轩田机器学习技法
这节课的题目是Deep learning,个人以为说的跟Deep learning比较浅,跟autoencoder和PCA这块内容比较紧密. 林介绍了deep learning近年来受到了很大的关注: ...
- 【Neural Network】林轩田机器学习技法
首先从单层神经网络开始介绍 最简单的单层神经网络可以看成是多个Perception的线性组合,这种简单的组合可以达到一些复杂的boundary. 比如,最简单的逻辑运算AND OR NOT都可以由多 ...
- 【Random Forest】林轩田机器学习技法
总体来说,林对于random forest的讲解主要是算法概况上的:某种程度上说,更注重insights. 林分别列举了Bagging和Decision Tree的各自特点: Random Fores ...
- 【Decision Tree】林轩田机器学习技法
首先沿着上节课的AdaBoost-Stump的思路,介绍了Decision Tree的路数: AdaBoost和Decision Tree都是对弱分类器的组合: 1)AdaBoost是分类的时候,让所 ...
- 【Adaptive Boosting】林轩田机器学习技法
首先用一个形象的例子来说明AdaBoost的过程: 1. 每次产生一个弱的分类器,把本轮错的样本增加权重丢入下一轮 2. 下一轮对上一轮分错的样本再加重学习,获得另一个弱分类器 经过T轮之后,学得了T ...
- 【Linear Support Vector Machine】林轩田机器学习技法
首先从介绍了Large_margin Separating Hyperplane的概念. (在linear separable的前提下)找到largest-margin的分界面,即最胖的那条分界线.下 ...
- 【Support Vector Regression】林轩田机器学习技法
上节课讲了Kernel的技巧如何应用到Logistic Regression中.核心是L2 regularized的error形式的linear model是可以应用Kernel技巧的. 这一节,继续 ...
- 【Dual Support Vector Machine】林轩田机器学习技法
这节课内容介绍了SVM的核心. 首先,既然SVM都可以转化为二次规划问题了,为啥还有有Dual啥的呢?原因如下: 如果x进行non-linear transform后,二次规划算法需要面对的是d`+1 ...
随机推荐
- Selenium入门12 鼠标和键盘事件
1 鼠标 集成在webdriver.ActionChains.单击.双击.右击.拖放等等. 2 键盘 引入包from selenium.webdriver.common.keys import K ...
- Javascript作业—封装type函数,返回较详细的数据类型
Javascript作业—封装type函数,返回较详细的数据类型 思路: 1 取typeof的值,如果是数字.函数等非对象类型,直接取类型 2 如果是object类型,则调用Object.protot ...
- MySQL latch小结
lock和latch的比较 对于INNODB存储引擎中的latch可以通过命令 SHOW ENGINE INNODB MUTEX 看到latch的更多信息 说明: 列Type显示的总是 InnoD ...
- vuejs父子组件的数据传递
在vue中,父组件往子组件传递参数都是通过属性的形式来传递的 <div id='root'> <counter :count = '1'></counter> &l ...
- Performing User-Managed Database-18.5、Restoring Control Files
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/offbeatmine/article/details/28429339 18.5.Restoring ...
- unity简单例子
1. https://www.cnblogs.com/chengxuzhimei/p/4992106.html 2.https://www.cnblogs.com/GreenLeaves/p/7086 ...
- Multigrid for Poisson’s Equation
泊松方程如何用多重网格求解 来源:佐治亚理工学院 教授:Prof. Richard Vuduc 主页:http://vuduc.org/index.php 教授内容:http://vuduc.org/ ...
- SpringMVC3中返回json字符串时500 Internal Server Error的处理方案
搭建 Spring3+MyBatis+Rest+BootStrap+JBPM项目环境后,测试发现了一个操蛋的问题.使用Spring MVC的自动类型转换为JSON时,后台数据List/Map获取完全正 ...
- HttpWebRequest类之基本定义
HttpWebRequest和HttpWebResponse类是用于发送和接收HTTP数据的最好选择.它们支持一系列有用的属性.这两个类位 于System.Net命名空间,默认情况下这个类对于控制台程 ...
- Java面试不得不知的程序(二)
[程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 斐波那契数列:前面相邻两项之和,构 ...