佩尔方程x*x-d*y*y=1,当d不为完全平方数时,有无数个解,并且知道一个解可以推其他解。 如果d为完全平方数时,可知佩尔方程无解。

假设(x0,y0)是最小正整数解。

则:

xn=xn-1*x0+d*yn-1*y0

yn=xn-1*y0+yn-1*x0

证明只需代入。 如果忘记公式可以自己用(x0*x0-d*y0*y0)*(x1*x1-d*y1*y1)=1 推。

这样只要暴力求出最小特解,就可以用快速幂求出任意第K个解。

Street Numbers
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2813   Accepted: 1568

Description

A computer programmer lives in a street with houses numbered consecutively (from 1) down one side of the street. Every evening she walks her dog by leaving her house and randomly turning left or right and walking to the end of the street and back. One night she adds up the street numbers of the houses she passes (excluding her own). The next time she walks the other way she repeats this and finds, to her astonishment, that the two sums are the same. Although this is determined in part by her house number and in part by the number of houses in the street, she nevertheless feels that this is a desirable property for her house to have and decides that all her subsequent houses should exhibit it. 
Write a program to find pairs of numbers that satisfy this condition. To start your list the first two pairs are: (house number, last number):

         6         8

35 49

Input

There is no input for this program.

Output

Output will consist of 10 lines each containing a pair of numbers, in increasing order with the last number, each printed right justified in a field of width 10 (as shown above).

Sample Input


Sample Output

         6         8
35 49

这题可以得到佩尔方程s*s-8*t*t=1 ,s=2n+1,t=x (n表示总长,x表示取的n中某个位置)

s0=3,t0=1 然后就很好弄了

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std; int main(int argc, const char * argv[]) {
long long s0=;
long long t0=;
long long s1=;
long long t1=;
for(int i=;i<=;i++)
{
long long s,t;
s=s1*s0+*t1*t0;
t=t1*s0+t0*s1;
s1=s;
t1=t;
printf("%10lld%10lld\n",t,(s-)/);
//cout<<t<<" "<<(s-1)/2<<endl;
}
return ;
}

这题用暴力然后打表也是可以0MS过的。

Pell方程(求形如x*x-d*y*y=1的通解。)的更多相关文章

  1. Pell方程及其一般形式

    一.Pell方程 形如x^2-dy^2=1的不定方程叫做Pell方程,其中d为正整数,则易得当d是完全平方数的时候这方程无正整数解,所以下面讨论d不是完全平方数的情况. 设Pell方程的最小正整数解为 ...

  2. POJ 1320 Street Numbers Pell方程

    http://poj.org/problem?id=1320 题意很简单,有序列 1,2,3...(a-1),a,(a+1)...b  要使以a为分界的 前缀和 和 后缀和 相等 求a,b 因为序列很 ...

  3. POJ 2427 Smith's Problem Pell方程

    题目链接 :  http://poj.org/problem?id=2427 PELL方程几个学习的网址: http://mathworld.wolfram.com/PellEquation.html ...

  4. HDU 2281 Square Number Pell方程

    http://acm.hdu.edu.cn/showproblem.php?pid=2281 又是一道Pell方程 化简构造以后的Pell方程为 求出其前15个解,但这些解不一定满足等式,判断后只有5 ...

  5. HDU 6222 Heron and His Triangle (pell 方程)

    题面(本人翻译) A triangle is a Heron's triangle if it satisfies that the side lengths of it are consecutiv ...

  6. hdu3293(pell方程+快速幂)

    裸的pell方程. 然后加个快速幂. No more tricks, Mr Nanguo Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: ...

  7. hdu2281&&POJ1320——Pell方程

    hdu2281 输入一个 $N$,求最大的 $n$($n \leq N$)和 $x$,使得 $x^2 = \frac{1^2+2^2+...+n^2}{n}$. 分析: 将右边式子的分子求和化简,有: ...

  8. [NBUT 1224 Happiness Hotel 佩尔方程最小正整数解]连分数法解Pell方程

    题意:求方程x2-Dy2=1的最小正整数解 思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节.具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8 ...

  9. Sympy解方程-求极限-微分-积分-矩阵运算

    简介 Sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值.求极限.解方程.求积分.微分方程.级数展开.矩阵运算等等计算问题.虽然Matlab的类似科学计算能力也很强大 ...

随机推荐

  1. Ubuntu中彻底修改用户名及密码

    转自:http://blog.csdn.net/sailor201211/article/details/52305591 方案二:修改与用户和组相关的配置文件 这种方法更加本质,直接修改与用户和组相 ...

  2. Java虚拟机内存分配和回收策略

    1 对象优先分配在Eden区 对象优先在Eden进行分配,大多数情况下,对象在新生代Eden区进行分配.当Eden区没有足够的空间进行分配时,虚拟机会发起一次Minor GC. 新生代GC(Ninor ...

  3. 比特币Bitcoin-qt客户端加密前后如何导入导出私钥?

    一.Bitcoin-qt客户端加密后 如需要导出某一地址对应的私钥,需要先调用 walletpassphrase 密码 解锁持续时间(秒), 如:walletpassphrase h123456789 ...

  4. Win7 无法将快捷方式从任务栏移除怎么办

    不知道是什么修改了系统的属性了.在网上找到了这个方法解决了:一:为了解决这个问题,你可以尝试下面的方法:    把以下命令分别输入到开始-运行中    1.cmd /k reg add "H ...

  5. flask和pymongo的完美搭配

    1.如何进行mongo数据库的链接 import pymongo client = pymongo.MongoClient(host='192.168.*.*', port=27017,) db_au ...

  6. HTTP图解--了解Web及网络基础

    1.网络基础TCP/IP 通常使用的网络是在TCP/IP协议族的基础上运行的,http属于它内部的一个子集. TCP/IP协议族按层次分别分为:应用层.传输层.网络层和数据链路层.分层的好处在于各司其 ...

  7. cmd命令速查手册

    CMD命令速查手册ASSOC显示或修改文件扩展名关联AT 计划在计算机上运行的命令和程序ATTRIB 显示或更改文件属性BREAK 设置或清除扩展式 CTRL+C检查CACLS显示或修改文件的访问控制 ...

  8. Android下的ActionBar

    1 http://blog.csdn.net/lilu_leo/article/details/7674904 2 http://blog.csdn.net/eclipsexys/article/de ...

  9. C# 中 finally 的用法

    当一个异常抛出时,它会改变程序的执行流程.因此不能保证一个语句结束后,它后面的语句一定会执行,在 C# 中这个问题可以用 finally 解决. 为了确保一个语句总是能执行(不管是否抛出异常),需要将 ...

  10. ArcObject IFeature set_Shape()和Delete()报错

    这样的问题主要是Ifeature实际在数据库里面不存在!可是通过IFeatureClass.getFeature()又可以得到! 详细操作流程: 首先是对要素进行删除,可是通过IFeatureClas ...