Codechef Union on Tree
Codechef Union on Tree
https://www.codechef.com/problems/BTREE
简要题意:
- 给你一棵树,\(Q\)次询问,每次给出一个点集和每个点的\(r_i\),每个点可以覆盖距离小于等于\(r_i\)的点。
- 问有多少点会被覆盖。
分析:
- 建出虚树,然后我们做两边\(dp\)把所有点的\(r_i\)更新成从这个点能覆盖的最远距离或从其他点出来经过这个点后能够覆盖的最远距离。
- 这样做的好处是对于一条边\((x,y)\),一定存在一个点\(z\),使得\(y\)更新\(z\)比\(x\)优。
- 于是可以计算答案,令\(F(x,d)\)为和\(x\)距离小于等于\(d\)的点数。
- 答案等于\(\sum\limits_iF(i,r_i)-\sum\limits_{x,y,p\in x,p\in y}1\)。 前面那个直接求就行了。
- 后面那个相当于找到这个\(z\),设\(x\)是\(y\)的祖先,有多个点在\(z\)上边被\(y\)包含,有多少点在\(z\)下边被\(x\)包含。
- 由于\(r_x-(dep_z-dep_x)=r_y-(dep_y-dep_z)\),可以确定\(z\)的位置,同时可以发现所求的点向上下延伸的长度是相等的,于是相当于求\(F(z,r_x-(dep_z-dep_x))\) 。
- 求\(F\)可以用动态点分治。
- 还有一个问题,可能不存在\(z\)这个点,可能在边上,我们一开始把边也当成点就好了。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <vector>
using namespace std;
#define N 100050
char buf[100000],*p1,*p2;
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
inline int rd() {int x=0;char c=nc(); while(c<48)c=nc();while(c>47)x=((x+(x<<2))<<1)+(c^48),c=nc(); return x;}
#define db(x) cerr<<#x<<" = "<<x<<endl
int head[N],to[N<<1],nxt[N<<1],cnt,n,m,ff[N],lm;
int siz[N],fk[N],tot,root,dep[N],fa[N][20],dis[N][20],used[N],ans;
int sz[N],son[N],d[N],f[N],top[N],dfn[N],idf[N];
int p[N],r[N],S[N],tp,vis[N];
vector<int>V[N][2];
inline void add(int u,int v) {to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;}
void gr(int x,int y) {
int i; siz[x]=1; fk[x]=0;
for(i=head[x];i;i=nxt[i]) if(to[i]!=y&&!used[to[i]]) {
gr(to[i],x); siz[x]+=siz[to[i]]; fk[x]=max(fk[x],siz[to[i]]);
}
fk[x]=max(fk[x],tot-siz[x]); if(fk[x]<fk[root]) root=x;
}
void gd(int x,int y,int rt,int d) {
sz[rt]+=(x<=n); V[rt][0][d]+=(x<=n); V[rt][1][dis[x][dep[x]]]+=(x<=n);
fa[x][++dep[x]]=rt; dis[x][dep[x]]=d; int i;
for(i=head[x];i;i=nxt[i]) if(to[i]!=y&&!used[to[i]]) {
gd(to[i],x,rt,d+1);
}
}
void solve(int x) {
int i,al=tot;
used[x]=1; V[x][0].resize(al+2),V[x][1].resize(al+2); gd(x,0,x,0);
for(i=1;i<al+2;i++) V[x][0][i]+=V[x][0][i-1],V[x][1][i]+=V[x][1][i-1];
for(i=head[x];i;i=nxt[i]) if(!used[to[i]]) {
tot=siz[to[i]]; if(tot>siz[x]) tot=al-siz[x]; root=0; gr(to[i],x); solve(root);
}
}
int query(int x,int o,int v) {if(!x) return 0; if(v>int(V[x][o].size())-1) return sz[x]; return V[x][o][v];}
int work(int x,int v) {if(v<0)return 0;int i,re=0; for(i=dep[x];i;i--) if(v>=dis[x][i]) re+=query(fa[x][i],0,v-dis[x][i])-query(fa[x][i+1],1,v-dis[x][i]); return re;}
void d1(int x,int y) {
f[x]=y,d[x]=d[y]+1,siz[x]=1;int i;
for(i=head[x];i;i=nxt[i]) if(to[i]!=y) {
d1(to[i],x),siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
}
void d2(int x,int t) {
top[x]=t; dfn[x]=++dfn[0]; idf[dfn[0]]=x; if(son[x]) d2(son[x],t); int i;
for(i=head[x];i;i=nxt[i]) if(to[i]!=f[x]&&to[i]!=son[x]) d2(to[i],to[i]);
}
int lca(int x,int y) {for(;top[x]!=top[y];y=f[top[y]]) if(d[top[x]]>d[top[y]]) swap(x,y); return d[x]<d[y]?x:y;}
int jmp(int x,int t) {for(;d[top[x]]>t;x=f[top[x]]); return idf[dfn[x]-(d[x]-t)];}
inline bool cmp(const int &x,const int &y) {return dfn[x]<dfn[y];}
void d3(int x) {p[++lm]=x; int i;if(!vis[x]) r[x]=-1;for(i=head[x];i;i=nxt[i])ff[to[i]]=x,d3(to[i]);head[x]=0;}
int main() {
n=rd(); int i,x,y;
for(i=1;i<n;i++) {
x=rd(), y=rd(); add(x,n+i), add(n+i,x); add(y,n+i), add(n+i,y);
}
fk[0]=1<<30; tot=2*n-1; root=0; gr(1,0); solve(root); d1(1,0); d2(1,1);
int Q=rd(); memset(head,0,sizeof(head)); cnt=0;
while(Q--) {
m=rd(); cnt=ans=0;
for(i=1;i<=m;i++) p[i]=rd(),r[p[i]]=rd()<<1,vis[p[i]]=1;
sort(p+1,p+m+1,cmp); S[tp=1]=1;
for(i=1;i<=m;i++) {
x=p[i]; y=lca(x,S[tp]);
while(d[y]<d[S[tp]]) {
if(d[y]>=d[S[tp-1]]) {
add(y,S[tp]); tp--;
if(S[tp]!=y) S[++tp]=y;
break;
}
add(S[tp-1],S[tp]); tp--;
}
if(S[tp]!=x) S[++tp]=x;
}
while(tp>1) add(S[tp-1],S[tp]),tp--;
lm=0; d3(1);
for(i=lm;i>1;i--) r[ff[p[i]]]=max(r[ff[p[i]]],r[p[i]]-(d[p[i]]-d[ff[p[i]]]));
for(i=2;i<=lm;i++) r[p[i]]=max(r[p[i]],r[ff[p[i]]]-(d[p[i]]-d[ff[p[i]]]));
for(i=1;i<=lm;i++) ans+=work(p[i],r[p[i]]);
for(i=2;i<=lm;i++) {
x=p[i],y=ff[x];
int z=jmp(x,(d[x]-r[x]+d[y]+r[y])>>1);
ans-=work(z,r[x]-(d[x]-d[z]));
}
printf("%d\n",ans);
for(i=1;i<=lm;i++) vis[p[i]]=0;
}
}
Codechef Union on Tree的更多相关文章
- Codechef Observing the Tree
Home » Practice(Hard) » Observing the Tree https://www.codechef.com/problems/QUERY Observing the T ...
- 【点分树】codechef Yet Another Tree Problem
已经连咕了好几天博客了:比较经典的题目 题目大意 给出一个 N 个点的树和$K_i$, 求每个点到其他所有点距离中第 $K_i$ 小的数值. 题目分析 做法一:点分树上$\log^3$ 首先暴力做法: ...
- Codechef Chef Cuts Tree
该思博的时候就思博到底,套路的时候不能再套路的一道题 首先我们将联通块的大小平方和进行转化,发现它就等价于连通点对数,而这个可以转化为连接两点的边数(距离)和 所以我们考虑第\(i\)天时,一个点对\ ...
- @codechef - KILLER@ Painting Tree
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 N 个点的有根树,标号 1 到 N,以 1 为根.定义 ...
- GDB中文手册
用GDB调试程序GDB概述 2使用GDB 5GDB中运行UNIX的shell程序 8在GDB中运行程序 8调试已运行的程序 两种方法: 9暂停 / 恢复程序运行 9一.设置断点(BreakPoint) ...
- Linux高级编程--04.GDB调试程序(查看数据)
查看栈信息 当程序被停住了,你需要做的第一件事就是查看程序是在哪里停住的.当你的程序调用了一个函数,函数的地址,函数参数,函数内的局部变量都会被压入"栈"(Stack)中.你可以用 ...
- GDB 使用大法
一.GDB 我用的是 GCC+POWERSHELL+GDB, GDB刚刚接触也有很多要记的. 二.一个调试示例 tst.c #include <stdio.h> int func(int ...
- poj----(1470)Closest Common Ancestors(LCA)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 15446 Accept ...
- poj----1330Nearest Common Ancestors(简单LCA)
题目连接 http://poj.org/problem?id=1330 就是构建一棵树,然后问你两个节点之间最近的公共父节点是谁? 代码: /*Source Code Problem: 1330 U ...
随机推荐
- 【BZOJ2422】Times 树状数组
[BZOJ2422]Times Description 小y作为一名资深的dotaer,对视野的控制有着深刻的研究.每个单位在一段特定的时间内会出现在小y的视野内,除此之外的时间都在小y看不到的地方. ...
- 【BZOJ1000】A+B Problem ★BZOJ1000题达成★
[BZOJ1000]A+B Problem Description 输入两个数字,输出它们之和 Input 一行两个数字A,B(0<=A,B<100) Output 输出这两个数字之和 S ...
- 【BZOJ3791】作业 DP
[BZOJ3791]作业 Description 众所周知,白神是具有神奇的能力的.比如说,他对数学作业说一声“数”,数学作业就会出于畏惧而自己完成:对语文作业说一声“语”,语文作业就会出于畏惧而自己 ...
- Cadence 15.7 win7无法启动解决方法
原帖地址:http://blog.sina.com.cn/s/blog_69a5dce90100kscf.html 按照XP下的破解方法安装Cadence15.7后, 如果不能正常启动Cadence ...
- Struts中类型转换踩的坑
出现的异常: 当我输入的数据很大时候,转换后如上,这并不是我想要的, 出现问题的原因: Struts2对常用的数据类型如String.Integer.Double等都添加了转换器进行对应的转换操作. ...
- 京东android面试题(2018 顶级互联网公司面试题系列)
以下来自于北京的一个兄弟的面试题 1.静态内部类和非静态内部类有什么区别 2.谈谈你对java多态的理解 3.如何开启线程,run和runnable有什么区别 4.线程池的好处 5.说一下你知 ...
- 【python】-- MySQL简介、安装、操作
MySQL简介.安装.操作 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数据库都有一个或多个不同的API用于创建,访问,管理,搜索和复制所保存的数据.我们也可以将数据存储 ...
- Mac下nginx安装和配置
nginx安装 brew search nginx brew install nginx 安装完以后,可以在终端输出的信息里看到一些配置路径: /usr/local/etc/nginx/nginx.c ...
- Django redis2 列表 和其他操作
列表的操作 List操作,redis中的List在在内存中按照一个name对应一个List来存储.如图: lpush插值至列表最左边 lpush(name,values) # 在name对应的list ...
- PAT 1059. C语言竞赛(20)
C语言竞赛是浙江大学计算机学院主持的一个欢乐的竞赛.既然竞赛主旨是为了好玩,颁奖规则也就制定得很滑稽: 0. 冠军将赢得一份“神秘大奖”(比如很巨大的一本学生研究论文集……). 1. 排名为素数的学生 ...