bzoj 2001: City 城市建设 cdq
题目
PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁。Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费。Louis希望建造最少的道路使得国内所有的城市连通。但是由于某些因素,城市之间修建道路需要的花费会随着时间而改变,Louis会不断得到某道路的修建代价改变的消息,他希望每得到一条消息后能立即知道使城市连通的最小花费总和, Louis决定求助于你来完成这个任务。
题解
经典的动态最小生成树问题。
可以采用cdq分治的方式来解决。
核心思想就是:
- 对于无论被修改的边修改成什么样都一定会被加入的非修改边进行缩点以减小数据范围。
- 对于无论被修改的边修改成什么样都一定不被加入的非修改边进行删除以减小数据范围。
对于两种边的确定可以直接设被修改的边的边权为-inf或inf,然后跑Kruskal确定
复杂度。。。
他们说是\(O(nlog^2n)\)的。。。
反正跑的很快就是了。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;static char ch;static bool flag;flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
#define rg register int
#define rep(i,a,b) for(rg i=(a);i<=(b);++i)
#define per(i,a,b) for(rg i=(a);i>=(b);--i)
const int maxn = 50010;
const int maxm = 100010;
const int inf = 0x3f3f3f3f;
struct Edge{
int u,v,w,id;
bool friend operator < (const Edge &a,const Edge &b){
return a.w < b.w;
}
}e[30][maxm],L[maxm],tmp[maxm];
int Nn[30],Ne[30];
int fa[maxn];
inline int find(int x){
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline bool merge(int u,int v){
int x = find(u);
int y = find(v);
if(x == y) return false;
fa[x] = y;return true;
}
int val[maxm];
struct Node{
int k,w;
}qer[maxm];
bool vis[maxm];
int tmp_n[maxn],tmp_m[maxm],map[maxm];
ll ans[maxm];
inline void step1(int &n,int &m,ll &res){
int N = 0,M = 0;
rep(i,1,n) fa[i] = i;
rep(i,0,m-1) vis[i] = 0;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v) && L[i].w != -inf){
res += L[i].w;
vis[i] = true;
}else tmp[M ++ ] = L[i];
}
rep(i,1,n) fa[i] = i;
rep(i,0,m-1) if(vis[i]) merge(L[i].u,L[i].v);
rep(i,1,n) if(find(i) == i) tmp_n[i] = ++ N;
rep(i,1,n) tmp_n[i] = tmp_n[find(i)];
rep(i,0,M-1){
L[i] = tmp[i];
map[L[i].id] = i;
L[i].u = tmp_n[L[i].u];
L[i].v = tmp_n[L[i].v];
}
n = N;m = M;
}
inline void step2(int &n,int &m){
int M = 0;
rep(i,1,n) fa[i] = i;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v) || L[i].w == inf){
map[L[i].id] = M;
L[M++] = L[i];
}
}m = M;
}
inline void solve(int l,int r,int cur,ll res){
int n = Nn[cur],m = Ne[cur];
if(l == r) val[qer[r].k] = qer[r].w;
rep(i,0,m-1){
e[cur][i].w = val[e[cur][i].id];
L[i] = e[cur][i];
map[L[i].id] = i;
}
if(l == r){
rep(i,1,n) fa[i] = i;
sort(L,L+m);
rep(i,0,m-1){
if(merge(L[i].u,L[i].v)) res += L[i].w;
}
ans[l] = res;
return ;
}
rep(i,l,r) L[map[qer[i].k]].w = -inf;step1(n,m,res);
rep(i,l,r) L[map[qer[i].k]].w = inf;step2(n,m);
Nn[cur+1] = n;Ne[cur+1] = m;
rep(i,0,m-1) e[cur+1][i] = L[i];
int mid = l+r >> 1;
solve(l,mid,cur+1,res);
solve(mid+1,r,cur+1,res);
}
int main(){
int n,m,Q;read(n);read(m);read(Q);
rep(i,0,m-1){
read(e[0][i].u);
read(e[0][i].v);
read(e[0][i].w);
val[i] = e[0][i].w;
e[0][i].id = i;
}
rep(i,1,Q){
read(qer[i].k);read(qer[i].w);
-- qer[i].k;
}
Nn[0] = n;Ne[0] = m;
solve(1,Q,0,0);
rep(i,1,Q) printf("%lld\n",ans[i]);
return 0;
}
bzoj 2001: City 城市建设 cdq的更多相关文章
- bzoj 2001 CITY 城市建设 cdq分治
题目传送门 题解: 对整个修改的区间进行分治.对于当前修改区间来说,我们对整幅图中将要修改的边权都先改成-inf,跑一遍最小生成树,然后对于一条树边并且他的权值不为-inf,那么这条边一定就是树边了. ...
- BZOJ2001 [Hnoi2010]City 城市建设 CDQ分治
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MB Description PS国是一个拥有诸多城市的大国,国王Lou ...
- BZOJ 2001: [Hnoi2010]City 城市建设
2001: [Hnoi2010]City 城市建设 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1132 Solved: 555[Submit][ ...
- 【BZOJ2001】 [Hnoi2010]City 城市建设
BZOJ2001 [Hnoi2010]City 城市建设 Solution 我们考虑一下这个东西怎么求解? 思考无果...... 咦? 好像可以离线cdq,每一次判断一下如果这条边如果不选就直接删除, ...
- 2001: [Hnoi2010]City 城市建设 - BZOJ
DescriptionPS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少的 ...
- 【刷题】BZOJ 2001 [Hnoi2010]City 城市建设
Description PS国是一个拥有诸多城市的大国,国王Louis为城市的交通建设可谓绞尽脑汁.Louis可以在某些城市之间修建道路,在不同的城市之间修建道路需要不同的花费.Louis希望建造最少 ...
- BZOJ2001 [Hnoi2010]City 城市建设 【CDQ分治 + kruskal】
题目链接 BZOJ2001 题解 CDQ分治神题... 难想难写.. 比较朴素的思想是对于每个询问都求一遍\(BST\),这样做显然会爆 考虑一下时间都浪费在了什么地方 我们每次求\(BST\)实际上 ...
- BZOJ2001: [Hnoi2010]City 城市建设
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2001 cdq分治+重建图. 可以保留当前一定会被选的非修改边然后把点缩起来.这样的话每次点数至 ...
- 【bzoj2001】 Hnoi2010—City 城市建设
http://www.lydsy.com/JudgeOnline/problem.php?id=2001 (题目链接) 题意 给出一张无向图,$m$组操作,每次修改一条边的权值,对于每次操作输出修改之 ...
随机推荐
- 鸟哥的Linux私房菜-----6、文件与文件夹管理
- Jmeter 05 JMeter元件详解
1. JMeter 逻辑控制器 Switch条件控制器.While条件控制器.交替控制器.仅一次控制器.随机控制器.随机顺序控制器.条件控制器(如果(if)).循环控制器.录制控制器.ForEach控 ...
- zookeeper curator CRUD
目录 Curator客户端的基本操作 写在前面 1.1.1. Curator客户端的依赖包 1.1.2. Curator 创建会话 1.1.3. CRUD 之 Create 创建节点 1.1.4. C ...
- maven编译问题-maven项目运行时找不到文件,解决方案之一
问题描述:以上信息是tomcat在启动项目的时候报的错误信息,发现没有找到配置文件,实际上配置文件在项目中是存在的,但是,在编译过程中,配置文件没有能加载到编译后的项目中.就造成了,找不到这些怕配置文 ...
- template.helper 检测浏览器 时间转换
template.helper('changeTime',function getLocalTime(nS) { var b=nS.substr(6,13); var c=parseInt(b) va ...
- iOS9 - 采用3D Touch
iPhone 6s/6s Plus提供了触摸屏的另一个维度的操作手势-3D Touch,通常有下面两种应用场景: 在主屏幕上重按APP图标可以提供进入APP特定功能的快捷菜单 在APP内部,可以通过重 ...
- js 动态加载事件的几种方法总结
本篇文章主要是对js 动态加载事件的几种方法进行了详细的总结介绍,需要的朋友可以过来参考下,希望对大家有所帮助 有些时候需要动态加载javascript事件的一些方法往往我们需要在 JS 中动态添 ...
- zabbix实现mysql数据库的监控(一)
zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案.它能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让系统管理员快速定位/解决存在的各种问 ...
- python学习笔记20160413
1. type(val) #查看val的类型. 2. 出现错误的时候, 读懂错误信息.3. raw_input('xxx') #读取用户输入都是string类型数据.4. ValueError: in ...
- Android系统Recovery工作原理之使用update.zip升级过程分析(三)【转】
本文转载自:http://blog.csdn.net/mu0206mu/article/details/7464699 以下的篇幅开始分析我们在上两个篇幅中生成的update.zip包在具体更新中所经 ...