Air Raid
Language:Default
Air Raid
Time Limit: 1000MS |
|
Memory Limit: 10000K |
Total Submissions: 9547 |
|
Accepted: 5696 |
Description
Consider a town where all the streets are one-way and each street leads from one intersection to another. It is also known that starting from an intersection and walking through town's streets you can never reach the same intersection i.e. the town's streets form no cycles.
With these assumptions your task is to write a program that finds the minimum number of paratroopers that can descend on the town and visit all the intersections of this town in such a way that more than one paratrooper visits no intersection. Each paratrooper lands at an intersection and can visit other intersections following the town streets. There are no restrictions about the starting intersection for each paratrooper.
Input
Your program should read sets of data. The first line of the input file contains the number of the data sets. Each data set specifies the structure of a town and has the format:
no_of_intersections
no_of_streets
S1 E1
S2 E2
......
Sno_of_streets Eno_of_streets
The first line of each data set contains a positive integer no_of_intersections (greater than 0 and less or equal to 120), which is the number of intersections in the town. The second line contains a positive integer no_of_streets, which is the number of streets in the town. The next no_of_streets lines, one for each street in the town, are randomly ordered and represent the town's streets. The line corresponding to street k (k <= no_of_streets) consists of two positive integers, separated by one blank: Sk (1 <= Sk <= no_of_intersections) - the number of the intersection that is the start of the street, and Ek (1 <= Ek <= no_of_intersections) - the number of the intersection that is the end of the street. Intersections are represented by integers from 1 to no_of_intersections.
There are no blank lines between consecutive sets of data. Input data are correct.
Output
The result of the program is on standard output. For each input data set the program prints on a single line, starting from the beginning of the line, one integer: the minimum number of paratroopers required to visit all the intersections in the town.
Sample Input
2
4
3
3 4
1 3
2 3
3
3
1 3
1 2
2 3
Sample Output
2
1
Source
|
有n个点和m条有向边,现在要在点上放一些伞兵,然后伞兵沿着图走,直到不能走为止
每条边只能是一个伞兵走过,问最少放多少个伞兵
题解
这就是最小路径点覆盖模板题。
拆点成出入点,连边,答案为n-最大匹配。
#include<iostream>
#include<bitset>
#include<cstring>
#include<vector>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
using namespace std;
co int N=301;
int n,m,f[N];
vector<int> e[N];
bitset<N> v;
bool dfs(int x){
for(unsigned i=0;i<e[x].size();++i){
int y=e[x][i];
if(v[y]) continue;
v[y]=1;
if(!f[y]||dfs(f[y])){
f[y]=x;
return 1;
}
}
return 0;
}
void Air_Raid(){
read(n),read(m);
for(int i=1;i<=n;++i) e[i].clear();
for(int x,y;m--;){
read(x),read(y);
e[x].push_back(y);
}
memset(f,0,sizeof f);
int ans=0;
for(int i=1;i<=n;++i){
v<<=n;
ans+=dfs(i);
}
printf("%d\n",n-ans);
}
int main(){
for(int t=read<int>();t--;) Air_Raid();
return 0;
}
6902 Vani和Cl2捉迷藏 0x60「图论」例题
描述
Vani和cl2在一片树林里捉迷藏。这片树林里有N座房子,M条有向道路,组成了一张有向无环图。N≤200,M≤30000。
树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔。如果从房子A沿着路走下去能够到达B,那么在A和B里的人是能够相互望见的。
现在cl2要在这N座房子里选择K座作为藏身点,同时Vani也专挑cl2作为藏身点的房子进去寻找,为了避免被Vani看见,cl2要求这K个藏身点的任意两个之间都没有路径相连。
为了让Vani更难找到自己,cl2想知道最多能选出多少个藏身点。
输入格式
输入数据的第一行是两个整数N和M。接下来M行,每行两个整数 x,y,表示一条从 x 到 y 的有向道路。
输出格式
输出一个整数K,表示最多能选取的藏身点个数。
在第二行输出 K 个空格分开的整数,表示选择的藏身点编号。如果有多个方案,输出任意一个即可。编号的输出顺序任意。
样例输入
7 5
1 2
3 2
2 4
4 5
4 6
样例输出
3
1 3 7
数据范围与约定
- 对于20% 的数据,N≤10,M<=20。
对于60% 的数据, N≤100,M<=1000。
对于100% 的数据,N≤200,M<=30000,1<=x,y<=N。
本题校验器(SPJ)
09 |
const int WRONG_ANSWER = 1; |
10 |
//fstd 标准输出 fout 选手输出 fin 标准输入 |
11 |
FILE *fstd,*fout,*fin; |
18 |
if (v[x]) return true ; |
19 |
for ( int i = 0; i < ver[x].size(); i++) { |
22 |
if (dfs(y)) return true ; |
29 |
fscanf (fin, "%d%d" , &n, &m); |
30 |
for ( int i = 1; i <= m; i++) { |
32 |
fscanf (fin, "%d%d" , &x, &y); |
35 |
fscanf (fstd, "%d" , &ans); |
36 |
fscanf (fout, "%d" , &val); |
38 |
if (val != ans) return false ; |
39 |
for ( int i = 1; i <= ans; i++) { |
40 |
int x; fscanf (fout, "%d" , &x); |
42 |
if (x < 1 || x > n || v[x]) return false ; |
45 |
for ( int i = 1; i <= n; i++) { |
47 |
memset (f, 0, sizeof (f)); |
50 |
if (dfs(i)) return false ; |
56 |
int main( int argc, char * argv[]) |
59 |
printf ( "参数不足 %d" ,argc); |
64 |
if (NULL==(fstd= fopen (argv[1], "r" ))){ |
67 |
if (NULL==(fout= fopen (argv[2], "r" ))){ |
70 |
if (NULL==(fin= fopen (argv[3], "r" ))){ |
</article>
题解
藏身点个数等于最小路径可重复点覆盖包含的路径条数。只需传递闭包,拆点跑二分图最大匹配,用点数减去它就行了。
证明见《进阶》,是一个利用了反证法的构造。
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-') w=-w;
for(;isdigit(ch);ch=getchar()) data=data*10+ch-'0';
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
co int N=201;
bool cl[N][N];
int match[N],n,m;
bool vis[N],succ[N];
int hide[N];
bool dfs(int x){
for(int i=1;i<=n;++i)
if(cl[x][i]&&!vis[i]){
vis[i]=1;
if(!match[i]||dfs(match[i])){
match[i]=x;
return 1;
}
}
return 0;
}
int main(){
read(n),read(m);
while(m--) cl[read<int>()][read<int>()]=1;
for(int i=1;i<=n;++i) cl[i][i]=1;
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
cl[i][j]|=cl[i][k]&cl[k][j];
for(int i=1;i<=n;++i) cl[i][i]=0;
// Maximum Matching on Split Bipartite Graph
int ans=n;
for(int i=1;i<=n;++i){
memset(vis,0,sizeof vis);
ans-=dfs(i);
}
printf("%d\n",ans);
for(int i=1;i<=n;++i) succ[match[i]]=1;
for(int i=1,k=0;i<=n;++i)
if(!succ[i]) hide[++k]=i;
memset(vis,0,sizeof vis);
for(bool modify=1;modify;){
modify=0;
for(int i=1;i<=ans;++i)
for(int j=1;j<=n;++j)
if(cl[hide[i]][j]) vis[j]=1;
for(int i=1;i<=ans;++i)
if(vis[hide[i]]){
modify=1;
while(vis[hide[i]]) hide[i]=match[hide[i]];
}
}
for(int i=1;i<=ans;++i) printf("%d ",hide[i]);
return 0;
}
- POJ1422 Air Raid 【DAG最小路径覆盖】
Air Raid Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6763 Accepted: 4034 Descript ...
- 【JZOJ3423】Vani和Cl2捉迷藏&【BZOJ1143】祭祀river
description vani和cl2在一片树林里捉迷藏-- 这片树林里有N座房子,M条有向道路,组成了一张有向无环图. 树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子 ...
- POJ1422 Air Raid
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8006 Accepted: 4803 Description Consi ...
- 「Poetize5」Vani和Cl2捉迷藏
描述 Description 这片树林里有N座房子,M条有向道路,组成了一张有向无环图.树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子A沿着路走下去能够到达B,那么在A和 ...
- [tyvj1957 Poetize5] Vani和Cl2捉迷藏 (最小路径可重点覆盖+二分图最大匹配)
传送门 Description 这片树林里有N座房子,M条有向道路,组成了一张有向无环图. 树林里的树非常茂密,足以遮挡视线,但是沿着道路望去,却是视野开阔.如果从房子A沿着路走下去能够到达B,那么在 ...
- codevs 2494 Vani和Cl2捉迷藏
/* 一开始大意了 以为和bzoj上的祭祀是一样的(毕竟样例都一样) 这里不知相邻的点可以相互到达 间接相连的也可以到达 所以floyed先建立一下关系 再跑最大独立集 下面贴一下95 和 100的代 ...
- CODE[VS]2494 Vani和Cl2捉迷藏
原题链接 这里有一个结论:最多能选取的藏身点个数等于最小路径可重复点覆盖的路径总数. 所以我们可以先传递闭包,然后求最小路径点覆盖即可. #include<cstdio> #include ...
- joyoi1957 「Poetize5」Vani和Cl2捉迷藏
最小路径可重点覆盖.先传递闭包,然后拆点,\(n-\)最大匹配,看算法竞赛进阶指南. #include <iostream> #include <cstring> #inclu ...
- Air Raid[HDU1151]
Air RaidTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- ProjectManager Beta 7 项目管理器发布
上次在Alpha阶段有一个可用版本Alpha 8也在这个博客发布了,传送:http://www.cnblogs.com/deali/p/ProjectManager.html ProjectManag ...
- 2218 补丁vs错误
2218 补丁vs错误 1999年CTSC国家队选拔赛 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 大师 Master 题解 题目描述 Description 错 ...
- PLSQL使用技巧----加快你的编程效率
使用PLSQL 编程效率明显有所提高了 1.登录后默认自动选中My Objects 默认情况下,PLSQL Developer登录后,Brower里会选择All objects,如果你登录的 ...
- socket编程python+c
python版: server: def socket_loop_server_function(): HOST = '192.168.56.1' PORT = 21567 sk = socket.s ...
- 怎样解决KEIL 5 编译KEIL4的带有RTX系统的project解决方法
1.笔者个人对KEIL5与KEIL4的比較 相较于KEIL 5 的"华丽",笔者还是喜欢KEIL4的"内敛".主要也还是习惯了, ...
- R语言图形base系统(三)
本篇介绍R语言base系统绘制散点图.条形图.直方图.箱线图.饼图,还将简单介绍点图.核密度图.折线图. 散点图: attach(mtcars) plot(wt, mpg, main="B ...
- Arduino 看门狗使用
1.需要调用 #include <avr/wdt.h> 2.设置看门狗复位时间 wdt_enable(WDTO_2S); 代码时间定义的底层查看 #define WDTO_15MS 0 / ...
- 关于python2中的unicode和str以及python3中的str和bytes
python3有两种表示字符序列的类型:bytes和str.前者的实例包含原始的8位值:后者的实例包含Unicode字符. python2中也有两种表示字符序列的类型,分别叫做str和unicode. ...
- Block的详细介绍
关于block的介绍 ==ios中的内存空间分级== 栈区 存放函数参数值.局部变量.函数返回地址等,函数跳转跳转时现场保护(寄存器),这些系统都会帮我们自动实现,无需我们干预. 所以大量的局部变量, ...
- Data Structure Array: Largest subarray with equal number of 0s and 1s
http://www.geeksforgeeks.org/largest-subarray-with-equal-number-of-0s-and-1s/ #include <iostream& ...