题目:

给你A,B,K

求最小的x满足Ax=B (mod K)


题解:

如果A,C互质请参考上一篇博客

将 Ax≡B(mod C) 看作是Ax+Cy=B方便叙述与处理.

我们将方程一直除去A,C的最大公约数进行变形,最终使得A和C互质.

将方程同除d1=gcd(A,C),得到B1=A/d1*Ax-1+C1y.有可能A和C1不互素,因此继续将方程同除d2=gcd(A,C1)得到B2=A2/d1d2*Ai-2+C2y.一直这样下去知道A和Ci互素.这里也能看出,若Bi不被gcd(A,Ci)整除则无解.

最终得到Bn=An/d1d2...dn*Ax-n+Cny,并记D=An/d1d2...dn,易证明gcd(D,Cn)=1,因此存在D的逆元,可以将最后的式子变为A x-n≡BnD-1(mod Cn),此时就能求解了.

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
typedef long long ll;
using namespace std;
ll x,z,k;
ll Gcd(ll x,ll y)
{
return y==?x:Gcd(y,x%y);
}
ll exGcd(ll a,ll b,ll &x,ll &y)
{
if (b==) return x=,y=,a;
ll r=exGcd(b,a%b,y,x);
y-=a/b*x;
return r;
}
ll inv(ll a,ll m)
{
ll x,y;
exGcd(a,m,x,y);
return (x%m+m)%m;
}
namespace Hash
{
const ll N=;
const ll H=;
struct adj
{
ll nxt,v,num,val;
}e[N];
ll head[H],ecnt=;
void init()
{
ecnt=;
memset(head,,sizeof(head));
}
void insert(ll x,ll val)
{
ll org=x;
x%=H;
for (int i=head[x];i;i=e[i].nxt)
{
if (e[i].num==org)
{
e[i].val=val;
return ;
}
}
e[++ecnt].num=org;
e[ecnt].val=val;
e[ecnt].nxt=head[x];
head[x]=ecnt;
}
ll query(ll x)
{
ll org=x;
x%=H;
for (int i=head[x];i;i=e[i].nxt)
if (e[i].num==org) return e[i].val;
return -;
}
}
ll BSGS(ll a,ll b,ll c)
{
ll cnt=,G,d=;
while ((G=Gcd(a,c))!=)
{
if (b%G!=) return -;
cnt++,b/=G,c/=G;
d=d*(a/G)%c;
}
b=b*inv(d,c)%c;
Hash::init();
ll s=sqrt(c*1.0);
ll p=;
for (int i=;i<s;i++)
{
if (p==b) return i+cnt;
Hash::insert(p*b%c,i);
p=p*a%c;
}
ll q=p,t;
for (int i=s;i-s+<=c-;i+=s)
{
t=Hash::query(q);
if (t!=-) return i-t+cnt;
q=q*p%c;
}
return -;
}
int check()
{
for (ll i=,j=;i<=;i++)
{
if (j==k)
{
printf("%lld\n",i);
return ;
}
j=j*x%z;
}
if (x==)
{
puts("No Solution");
return ;
}
return ;
}
int main()
{
while (scanf("%lld%lld%lld",&x,&z,&k) && x+z+k>)
{
x%=z,k%=z;
if (check()) continue;
ll ans=BSGS(x,k,z);
if (ans==-) puts("No Solution");
else printf("%lld\n",ans);
}
return ;
}

POJ 3243 Clever Y | BSGS算法完全版的更多相关文章

  1. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  2. luogu2485 [SDOI2011]计算器 poj3243 Clever Y BSGS算法

    BSGS 算法,即 Baby Step,Giant Step 算法.拔山盖世算法. 计算 \(a^x \equiv b \pmod p\). \(p\)为质数时 特判掉 \(a,p\) 不互质的情况. ...

  3. POJ 3243 Clever Y 扩展BSGS

    http://poj.org/problem?id=3243 这道题的输入数据输入后需要将a和b都%p https://blog.csdn.net/zzkksunboy/article/details ...

  4. poj 3243 Clever Y && 1467: Pku3243 clever Y【扩展BSGS】

    扩展BSGS的板子 对于gcd(a,p)>1的情况 即扩展BSGS 把式子变成等式的形式: \( a^x+yp=b \) 设 \( g=gcd(a,p) \) 那么两边同时除以g就会变成: \( ...

  5. POJ 3243 Clever Y(离散对数-拓展小步大步算法)

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

  6. [POJ 3243]Clever Y

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

  7. POJ 3243 Clever Y Extended-Baby-Step-Giant-Step

    题目大意:给定A,B,C,求最小的非负整数x,使A^x==B(%C) 传说中的EXBSGS算法0.0 卡了一天没看懂 最后硬扒各大神犇的代码才略微弄懂点0.0 參考资料: http://quarter ...

  8. poj 3243 Clever Y 高次方程

    1 Accepted 8508K 579MS C++ 2237B/** hash的强大,,还是高次方程,不过要求n不一定是素数 **/ #include <iostream> #inclu ...

  9. 【POJ】3243 Clever Y

    http://poj.org/problem?id=3243 题意:求$a^y \equiv b \pmod{p}$最小的$y$.(0<=x, y, p<=10^9) #include & ...

随机推荐

  1. 关于event loop

    之前写了篇文章 JS运行机制,里面对event loop简单的说明,面试时又遇到了关于该知识点的题目(主要是process.nextTick和setImmediate的执行顺序不太知道,查了之后才知道 ...

  2. C++ 类型转换(conv.)

    隐式类型转换 总结自:隐式类型转换&算数运算符 定义:隐式类型转换是指使用了与表达式规定或当前语境不相符的类型时所进行的类型转换,但是要注意,可能会存在转换出现歧义,从而无法通过编译;一切带有 ...

  3. lincode 680 Split String

    Split String    描述 笔记 数据 评测 Give a string, you can choose to split the string after one character or ...

  4. Ubuntu 下安装GIMP

    1.Add GIMP PPA Open terminal from Unity Dash, App launcher, or via Ctrl+Alt+T shortcut key. When it ...

  5. iPhone 横屏时默认会放大文字的问题

    有人说用 html { text-size-adjust: 100%; }我发现这个并不能解决问题.下面代码可以完美解决. 添加标签:<meta name="viewport" ...

  6. 图解HTTP总结(2)——简单的HTTP协议

    HTTP协议是一种不保存状态,即无状态(stateless)协议.HTTP协议自身不对请求和响应之间的通信状态进行保存.也就是说在HTTP这个级别,协议对于发送过的请求或响应都不做持久化处理. 使用H ...

  7. 学习Pytbon第十天 函数2 内置方法和匿名函数

    print( all([1,-5,3]) )#如果可迭代对象里所有元素都为真则返回真.0不为真print( any([1,2]) )#如果数据里面任意一个数据为真返回则为真a= ascii([1,2, ...

  8. POJ 1981 最大点覆盖问题(极角排序)

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8346   Accepted: 2974 ...

  9. maston总结

    Substitution Tags(替换标签) % ; # this is embedded Perl You have <% $cd_count %> CDs. Escaping sub ...

  10. webstrom Certificate validation failed

    今天好烦.因为装了一个webstrome,我的svn不管用了. 为了防止webstrom,我的日期改了,日期改了,csdn登不上去了.告诉我时期不对. 草草哦哦. 这就是那个svn出问题之后的画面. ...