损失函数,一般由两项组成,一项是loss term,另外一项是regularization term。

J=L+R

先说损失项loss,再说regularization项。

1. 分对得分1,分错得分0.gold standard

2. hinge loss(for softmargin svm),J=1/2||w||^2 + sum(max(0,1-yf(w,x)))

3. log los, cross entropy loss function in logistic regression model.J=lamda||w||^2+sum(log(1+e(-yf(wx))))

4. squared loss, in linear regression. loss=(y-f(w,x))^2

5. exponential loss in boosting. J=lambda*R+exp(-yf(w,x))

再说regularization项,

一般用的多的是R2=1/2||w||^2,R1=sum(|w|)。R1和R2是凸的,同时R1会使得损失函数更加具有sparse,而R2则会更加光滑些。具体可以参见下图:

caffe的损失函数,目前已经囊括了所有可以用的了吧,损失函数由最后一层分类器决定,同时有时会加入regularization,在BP过程中,使得误差传递得以良好运行。

contrastive_loss,对应contrastive_loss_layer,我看了看代码,这个应该是输入是一对用来做验证的数据,比如两张人脸图,可能是同一个人的(正样本),也可能是不同个人(负样本)。在caffe的examples中,siamese这个例子中,用的损失函数是该类型的。该损失函数具体数学表达形式可以参考lecun的文章Dimensionality Reduction by Learning an Invariant Mapping, Raia Hadsell, Sumit Chopra, Yann LeCun, cvpr 2006.

euclidean_loss,对应euclidean_loss_layer,该损失函数就是l=(y-f(wx))^2,是线性回归常用的损失函数。

hinge_loss,对应hinge_loss_layer,该损失函数就是。主要用在SVM分类器中。

infogain_loss,对应infogain_loss_layer,损失函数表达式没找到,只知道这是在文本处理中用到的损失函数。

multinomial_logistic_loss,对应multinomial_logistic_loss_layer,

sigmoid_cross_entropy,对应sigmoid_cross_entropy_loss_layer,也就是logistic regression使用的损失函数。

softmax_loss,对应softmax_loss_layer,损失函数等可以见UFLDL中关于softmax章节。在caffe中多类分类问题,损失函数就是softmax_loss,比如imagenet, mnist等。softmax_loss是sigmoid的多类问题。但是,我就没明白,multinomial_logistic_loss和这个有什么区别,看代码,输入有点差别,softmax的输入是probability,而multinomial好像不要求是probability,但是还是没明白,如果只是这样,岂不是一样啊?

这里详细说明了两者之间的差异,并且有详细的测试结果,非常赞。简单理解,multinomial 是将loss分成两个层进行,而softmax则是合在一起了。或者说,multinomial loss是按部就班的计算反向梯度,而softmax则是把两个步骤直接合并为一个步骤进行了,减少了中间的精度损失等 ,从计算稳定性讲,softmax更好,multinomial是标准做法,softmax则是一种优化吧。

转自caffe:

Softmax

  • LayerType: SOFTMAX_LOSS

The softmax loss layer computes the multinomial logistic loss of the softmax of its inputs. It’s conceptually identical to a softmax layer followed by a multinomial logistic loss layer, but provides a more numerically stable gradient.

references:

http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf

http://caffe.berkeleyvision.org/tutorial/layers.html

Bishop, pattern recognition and machine learning

http://deeplearning.stanford.edu/wiki/index.php/Softmax%E5%9B%9E%E5%BD%92

http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/

caffe的损失函数的更多相关文章

  1. Caffe学习笔记(二):Caffe前传与反传、损失函数、调优

    Caffe学习笔记(二):Caffe前传与反传.损失函数.调优 在caffe框架中,前传/反传(forward and backward)是一个网络中最重要的计算过程:损失函数(loss)是学习的驱动 ...

  2. Caffe框架下的图像回归测试

    Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...

  3. Caffe学习系列(13):对训练好的模型进行fine-tune

    使用http://www.cnblogs.com/573177885qq/p/5804863.html中的图片进行训练和测试. 整个流程差不多,fine-tune命令: ./build/tools/c ...

  4. caffe中各层的作用:

    关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta ( ...

  5. Caffe(卷积神经网络框架)介绍

    Caffe(卷积神经网络框架)Caffe,全称Convolution Architecture For Feature Extraction caffe是一个清晰,可读性高,快速的深度学习框架.作者是 ...

  6. caffe: fuck compile error again : error: a value of type "const float *" cannot be used to initialize an entity of type "float *"

    wangxiao@wangxiao-GTX980:~/Downloads/caffe-master$ make -j8find: `wangxiao/bvlc_alexnet/spl': No suc ...

  7. CAFFE中训练与使用阶段网络设计的不同

    神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使 ...

  8. caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization

    一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...

  9. 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型

    本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...

随机推荐

  1. js生成随机码(只含有数字和字母的随机码)

    /*** randomWord 产生任意长度随机字母数字组合** randomFlag 是否任意长度 min 任意长度最小位[固定位数] max 任意长度最大位*/ function randomWo ...

  2. Google Zxing 生成二维码

    Net Zxing 源码地址 http://zxingnet.codeplex.com/ github 地址 https://github.com/zxing/zxing 新建一个Winform 项目 ...

  3. C# 序列化(Binary、Xml、Soap)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.I ...

  4. python set_index与reset_index的妙用

  5. CI控制器调用内部方法并载入相应模板的做法

    当我打开链接:http://localhost/3g/index/open/a/b?from=timeline后,判断链接中的from是否等于timeline,如果等于timeline,那么就调用控制 ...

  6. Linux下的NFS快速配置教程与安全策略

    [51CTO专稿]在Linux下实现文件共享有多种方式,NFS就是其中之一.网络文件系统(NFS)协议是由Sun MicroSystem在20世纪80年代为了提供对共享文件的远程访问而设计和实现的.该 ...

  7. pat1066. Root of AVL Tree (25)

    1066. Root of AVL Tree (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue An A ...

  8. stl::iterator汇总

    STL——iterator 一.概述Iterator(迭代器)模式又称Cursor(游标)模式, 根据STL中的分类,iterator包括:Input Iterator:只能单步向前迭代元素,不允许修 ...

  9. 【防火墙】DMZ

    DMZ是英文“demilitarized zone”的缩写,中文名称为“隔离区”,也称“非军事化区”.它是为了解决安装防火墙后外部网络的访问用户不能访问内部网络服务器的问题,而设立的一个非安全系统与安 ...

  10. webgl学习总结画线面及场景和物体动

    WebGL是在浏览器中实现三维效果的一套规范.是浏览器中的3D引擎,是利用js代码来实现加载3D模型,渲染.输出等功能,从而实现在浏览器和微信中浏览三维文件的效果. three.js是基于WebGL的 ...