求解 A^x ≡ B mod C  C是质数 的最小非负整数解

证明:A^x ≡ A^(x%φ(C)) mod C

A^(x%φ(C))  ≡ A^(x-k*φ(C)) ≡ (A^x)/ A^(k*φ(C)) ≡ A^x mod C

所以枚举的话,x只需要枚举[0,φ(c)-1]

若x在[0,φ(C)-1]范围内有解,则同余方程有解,否则无解

令m=ceil(sqrt(m)),x=i*m-j

A^(i*m-j) ≡ B mod C

A^(i*m) ≡ B* A^j  mod C

将 B* A^j modC   j∈[1,m]  存入哈希表

从小到大枚举i,找到的第一个 A^(i*m)  mod C在哈希表中,i*m-j 就是答案

为什么 m=ceil(sqrt(C))

因为 x<φ(C)=C-1,所以 i*m-j<C-1,i*m<C-1+j

i∈[1,m],所以 m<sqrt(C-1+j)

为什么找到的最小的i,i*m-j 就是答案

因为在将 B* A^j 存入哈希表时,值如果相同的话,会用大的j替换小的j

i*m-j ,i相同时,j越大值越小

从小到大枚举i,A^(i*m) 的增长幅度 要大于A^j,所以i越小越好

void bsgs()
{
mp.clear();
int m=ceil(sqrt(C));
int mul=B;
mp[B]=0;
for(int j=;j<=m;++j)
{
mul=1LL*A*mul%C;
mp[mul]=j;
}
int am=Pow(A,m,C);
mul=;
for(int j=;j<=m;++j)
{
mul=1LL*mul*am%C;
if(mp.find(mul)!=mp.end())
{
printf("%d\n",j*m-mp[mul]);
return;
}
}
puts("No solution");
}

BSGS 算法的更多相关文章

  1. 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法

    BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...

  2. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  3. [BSGS算法]纯水斐波那契数列

    学弟在OJ上加了道"非水斐波那契数列",求斐波那契第n项对1,000,000,007取模的值,n<=10^15,随便水过后我决定加一道升级版,说是升级版,其实也没什么变化,只 ...

  4. BSGS算法

    BSGS算法 我是看着\(ppl\)的博客学的,您可以先访问\(ppl\)的博客 Part1 BSGS算法 求解关于\(x\)的方程 \[y^x=z(mod\ p)\] 其中\((y,p)=1\) 做 ...

  5. BSGS算法及扩展

    BSGS算法 \(Baby Step Giant Step\)算法,即大步小步算法,缩写为\(BSGS\) 拔山盖世算法 它是用来解决这样一类问题 \(y^x = z (mod\ p)\),给定\(y ...

  6. uva11916 bsgs算法逆元模板,求逆元,组合计数

    其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方 ...

  7. BSGS算法及其扩展

    bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...

  8. BSGS算法学习笔记

    从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...

  9. bsgs算法详解

    例题  poj 2417bsgs  http://poj.org/problem?id=2417 这是一道bsgs题目,用bsgs算法,又称大小步(baby step giant step)算法,或者 ...

  10. BSGS算法总结

    BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条 ...

随机推荐

  1. .NET Core容器化开发系列(零)——计划

    .NET Core相当完善的跨平台特性以及其轻量化的底层接口为我们能顺畅进行微服务开发提供了非常棒的基础. 作为支撑微服务最常见的基础技术--容器化将是本系列的核心内容. 接下来我计划用一个月左右的时 ...

  2. 如何在Windows Server 2003搭建Windows+iis+asp+access环境

    前提系统盘镜像要加载进来方案一:开始->管理您的服务器->添加或删除角色->下一步->自定义配置->下一步->选择应用程序服务器(IIS,ASP.NET)-> ...

  3. 软件测试_Loadrunner_APP测试_性能测试_脚本优化_脚本回放

    本文主要写一下在使用Loadrunner录制完毕APP脚本之后如何对脚本进行回放,如有不足,欢迎评论补充. 如没有安装Loadrunner软件,请查看链接:软件测试_测试工具_LoadRunner: ...

  4. (功能篇)回顾Bug管理系统Mantis优化改造经历

    共分为两篇,功能篇和技术篇. 时间大约是2016年冬天. 考虑搭一个用于Bug管理和追踪的系统. 综合比较下,选择了小巧的开源工具,Mantis. 在源码基础上,做代码修改,完成了定制版的优化改造. ...

  5. 使用Fidder从安卓模拟器获取APP内H5游戏网址

    大家都知道H5游戏其实是网页,但是有些APP或者微端不显示网址链接.这里给大家介绍介绍一种,利用Fiddler进行抓包,获取APP打开的网址的方法.有人说何必多此一举呢,直接用模拟器玩游戏就好了.的确 ...

  6. unity中camera摄像头控制详解

    目录 1. 缘起 2. 开发 2.1. 建立项目 2.2. 旋转 2.2.1. 四元数 2.3. 移动 2.3.1. 向量操作 2.4. 镜头拉伸 2.5. 复位 2.6. 优化 1 缘起 我们的产品 ...

  7. B1048 数字加密

    15/20 #include<bits/stdc++.h> using namespace std; stack<int> s; char a[3]={'J','Q','K'} ...

  8. 微软职位内部推荐-Sr. SE - Office incubation

    微软近期Open的职位: Senior Software Engineer-Office Incubation Office China team is looking for experienced ...

  9. Spring学习总结之装配bean

    1.  XML中显式配置 规范,文件头: <?xml version=”1.0” encoding=”UTF-8”?>            <beans xmlns=http:// ...

  10. linux内核分析第二周

    网易云课堂linux内核分析第二周 20135103                王海宁 <Linux内核分析>MOOC课程http://mooc.study.163.com/cours ...