HDU 3613 Best Reward(拓展KMP算法求解)
题目链接:
https://cn.vjudge.net/problem/HDU-3613
One of these treasures is a necklace made up of 26 different kinds
of gemstones, and the length of the necklace is n. (That is to say: n
gemstones are stringed together to constitute this necklace, and each of
these gemstones belongs to only one of the 26 kinds.)
In accordance with the classical view, a necklace is valuable if
and only if it is a palindrome - the necklace looks the same in either
direction. However, the necklace we mentioned above may not a palindrome
at the beginning. So the head of state decide to cut the necklace into
two part, and then give both of them to General Li.
All gemstones of the same kind has the same value (may be positive
or negative because of their quality - some kinds are beautiful while
some others may looks just like normal stones). A necklace that is
palindrom has value equal to the sum of its gemstones' value. while a
necklace that is not palindrom has value zero.
Now the problem is: how to cut the given necklace so that the sum of the two necklaces's value is greatest. Output this value.
the number of test cases. The description of these test cases follows.
For each test case, the first line is 26 integers: v
1, v
2, ..., v
26 (-100 ≤ v
i ≤ 100, 1 ≤ i ≤ 26), represent the value of gemstones of each kind.
The second line of each test case is a string made up of charactor
'a' to 'z'. representing the necklace. Different charactor representing
different kinds of gemstones, and the value of 'a' is v
1, the value of 'b' is v
2, ..., and so on. The length of the string is no more than 500000.
OutputOutput a single Integer: the maximum value General Li can get from the necklace.Sample Input
2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
aba
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
acacac
Sample Output
1
6
解题思路:
问题的关键还是如何判断从某个位置分割开后,前缀和后缀是否是回文串
这次采用拓展kmp算法求解,关于拓展kmp的介绍请参考另一篇博客:https://www.cnblogs.com/wenzhixin/p/9355480.html
先将s1反转赋值给s2,用s1去匹配s2,得到s2中每个后缀与s1的最长公共前缀数组extpre
用s2去匹配s1,得到s1中每个后缀与s2的最长公共前缀数组extpos
再枚举每一个分割点,判断,求值,更新答案取最优。
关键是如何使用extend数组,举个例子来说
abcde
当分割长度为2的时候,需要分别判断ab和bcde是否是回文串
先看ab,要看ab是否是回文串需要用到extpre数组,为什么用到它而不是另一个分析如下:
用s2去匹配s1制作的到extpre数组
s2 edcba
s1 abcde
要判断ab是否是回文串,就是看ba与s1的最长公共前缀是多少,如果恰好是ba的长度,就说明ba在原串中存在。也即extpre[ls - i] == i(其中ls是串的总长度)。同时又有两者逆序,必然是回文串。
再看bcde是否是回文串
用s1去匹配s2制作的到extpos数组
s1 abcde
s2 edcba
要判断bcde是否是回文串,就要看bcde与s2的最长公共前缀是多少,如果恰好是dcde的长度,就说明bcde在反串中存在。也即extpre[i] == ls - i(其中ls是串的总长度)。同时又有两者逆序,必然是回文串。
这样就完成了,是否是回文串的判断。
代码实现:
#include<cstdio>
#include<cstring> const int maxn = ;
int val[], presum[maxn], next[maxn], extpre[maxn], extpos[maxn];
char s1[maxn], s2[maxn]; void exkmp(char s[], char t[], int len, int ex[]);
void get_next(char t[], int len); int main()
{
int T;
scanf("%d", &T); while(T--){
for(int i = ; i < ; i++){
scanf("%d", &val[i]);
}
scanf("%s", s1);
int ls = strlen(s1);
presum[] = ;
for(int i = ;i < ls; i++){
s2[ls - - i] = s1[i];
presum[i + ] = presum[i] + val[s1[i] - 'a'];
}
s2[ls] = '\0'; exkmp(s2, s1, ls, extpre);//拿s1去匹配s2,得到s2中每个后缀与s1的最长公共前缀数组extpre
exkmp(s1, s2, ls, extpos);//拿s2去匹配s1,得到s1中每个后缀与s2的最长公共前缀数组extpos int ans = -;
for(int i = ; i <= ls - ; i++){//在长度为 i 处分割
int sum = ;
if(extpre[ls - i] == i)
sum += presum[i];
if(extpos[i] == ls - i)
sum += presum[ls] - presum[i];
if(sum > ans)
ans = sum;
}
printf("%d\n", ans);
}
return ;
} void get_next(char t[], int len){
next[] = len;
int k = ;
while(k < len && t[k] == t[k - ])
k++;
next[] = k; int po = ;
for(k = ; k< len; k++){
if(next[k - po] + k < next[po] + po)
next[k] = next[k - po];
else{
int j = next[po] + po - k;
if(j < )
j = ;
while(k + j < len && t[k] == t[k + j])
j++; next[k] = j;
po = k;
}
} } void exkmp(char s[], char t[], int len, int ex[])
{
memset(next, , sizeof(next));
get_next(t, len); int k=;
while(k < len && s[k] == t[k])
k++;
ex[] = k; int po = ;
for(k = ; k< len; k++){
if(next[k - po] + k < ex[po] + po)
ex[k] = next[k - po];
else{
int j = ex[po] + po - k;
if(j < )
j = ; while(k + j < len && j < len && s[k + j] == t[j])
j++;
ex[k] = j;
po = k;
}
}
}
HDU 3613 Best Reward(拓展KMP算法求解)的更多相关文章
- HDU 3613 Best Reward ( 拓展KMP求回文串 || Manacher )
题意 : 给个字符串S,要把S分成两段T1,T2,每个字母都有一个对应的价值,如果T1,T2是回文串,那么他们就会有一个价值,这个价值是这个串的所有字母价值之和,如果不是回文串,那么这串价值就为0.问 ...
- HDU 3613 Best Reward(扩展KMP求前后缀回文串)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3613 题目大意: 大意就是将字符串s分成两部分子串,若子串是回文串则需计算价值,否则价值为0,求分割 ...
- hdu 3613 Best Reward (manachar算法)
Best Reward Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Prob ...
- HDU 3613 Best Reward 正反两次扩展KMP
题目来源:HDU 3613 Best Reward 题意:每一个字母相应一个权值 将给你的字符串分成两部分 假设一部分是回文 这部分的值就是每一个字母的权值之和 求一种分法使得2部分的和最大 思路:考 ...
- 拓展KMP算法详解
拓展KMP解决的问题是给两个串S和T,长度分别是n和m,求S的每一个后缀子串与T的最长公共前缀分别是多少,记作extend数组,也就是说extend[i]表示S[i,n-1](i从0开始)和T的最长公 ...
- HDU - 3613 Best Reward(manacher或拓展kmp)
传送门:HDU - 3613 题意:给出26个字母的价值,然后给你一个字符串,把它分成两个字符串,字符串是回文串才算价值,求价值最大是多少. 题解:这个题可以用马拉车,也可以用拓展kmp. ①Mana ...
- 扩展KMP --- HDU 3613 Best Reward
Best Reward Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=3613 Mean: 给你一个字符串,每个字符都有一个权 ...
- hdu 3613"Best Reward"(Manacher算法)
传送门 题意: 国王为了犒劳立下战功的大将军Li,决定奖给Li一串项链,这个项链一共包含26中珠子"a~z",每种珠子都有 相应的价值(-100~100),当某个项链可以构成回文时 ...
- Best Reward 拓展kmp
Problem Description After an uphill battle, General Li won a great victory. Now the head of state de ...
随机推荐
- 方案dp。。
最近经常做到组合计数的题目,每当看到这种题目第一反应总是组合数学,然后要用到排列组合公式,以及容斥原理之类的..然后想啊想,最后还是不会做.. 但是比赛完之后一看,竟然是dp..例如前几天的口号匹配求 ...
- cmd如何进入d盘
首先打开CMD 点开始 运行输入 CMD 在CMD窗口中输入 CD\(就是返回根目录) 回车 在输入 D: 即可在D盘操作状态
- 转MySQL遇到的语法差异及解决方案
最近公司项目需要从SQL Server转到MySQL, 在转的过程中遇到两者语法之间的一些差异,在网上找了解决方案后,特记录在此.由于解决方案可能有很多种,我只记录了自己使用过的,仅作参考. 1. 拼 ...
- Spring Cloud实践之集中配置Spring-config
将一个系统中各个应用的配置文件集中起来,方便管理. import org.springframework.boot.SpringApplication; import org.springframew ...
- jzoj3084
發現題目函數本質是: 1.將某一數x的末尾1去掉 2.不斷將這個數/2,直到遇到新的1 我們發現一個數z可以用y步到達數x,記x二進制長度為c,分2種情況討論: 1.x是奇數,則z的前c個二進制數必須 ...
- 记一次线上事故的JVM内存学习
今天线上的hadoop集群崩溃了,现象是namenode一直在GC,长时间无法正常服务.最后运维大神各种倒腾内存,GC稳定后,服务正常.虽说全程在打酱油,但是也跟着学习不少的东西. 第一个问题:为什么 ...
- 阿里云RDS数据库备份文件恢复到本地数据库
参考这里:https://help.aliyun.com/knowledge_detail/41817.html 第4.2步要多注释掉一些(应该根据实际报错来注释): [mysqld] innodb_ ...
- c++11中关于std::thread的join的思考
c++中关于std::thread的join的思考 std::thread是c++11新引入的线程标准库,通过其可以方便的编写与平台无关的多线程程序,虽然对比针对平台来定制化多线程库会使性能达到最大, ...
- Docker 创建 mysql 容器
docker -v Docker version 18.06.1-ce, build e68fc7a 拉取 docker mysql 最新的镜像 docker pull mysql Using ...
- MVC3学习:将excel文件导入到sql server数据库
思路: 1.将excel文件导入到服务器中. 2.读取excel文件,转换成dataset. 3.循环将dataset数据插入到数据库中. 本例子使用的表格为一个友情链接表F_Link(LinkId, ...