【题目描述:】

今天是小Z的生日,同学们为他带来了一块蛋糕。这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值。

小Z作为寿星,自然希望吃到的第一块蛋糕的幸运值总和最大,但小Z最多又只能吃M小块(M≤N)的蛋糕。

吃东西自然就不想思考了,于是小Z把这个任务扔给了学OI的你,请你帮他从这N小块中找出连续的k块蛋糕(k≤M),使得其上的幸运值最大。

【输入格式:】

输入文件cake.in的第一行是两个整数N,M。分别代表共有N小块蛋糕,小Z最多只能吃M小块。

第二行用空格隔开的N个整数,第i个整数Pi代表第i小块蛋糕的幸运值。

【输出格式:】

输出文件cake.out只有一行,一个整数,为小Z能够得到的最大幸运值。





[算法分析:]

如果是想f[i]跟前面的某个状态有关就错了,这不是琪露诺,可以吃完m个之后继续吃

而是只能吃m小块蛋糕,所以DP方程应该是这个样子的:$$f[i] = max{\sum_{j = 1}^{min(m,\ i) - 1} a_{i - j}} + a_i$$

\[1≤i≤n
\]

而求\(\sum a_{i - j}\)的过程可以使用前缀和优化,这样时间复杂度便从\(O(n^3)\)优化到了\(O(n^2)\)

未优化的普通DP代码:

//求max{∑a[i-j]}
int maxn = 1 << 31;
int e = min(i, m) - 1;
for(int j=1; j<=e; ++j)
maxn = max(maxn, sum[i-1] - sum[i-j-1]);
if(maxn > maxn + a[i]) f[i-1] = maxn;
f[i] = maxn + a[i];

而对于\(N≤500000\)的数据显然\(n^2\)的复杂度是不达到要求的,

优化了求和,还可以优化求最大值的过程

线段树优化的复杂度是\(O(nlog_2n)\)显然是可以过的,但还可以用单调队列优化到\(O(n)\).

将前缀和存入单调队列,每一次都找到当前点到队首点的区间和,保证队首点值最小就能使得幸运值最大,所以队列中的元素应是从小到大排。

当队首的位置加上\(m\)之后还是无法到大点\(i\)时,就把队首\(pop\)掉.

单调队列中使用int类型表示元素的位置,要访问元素的值的话就是sum[q.front()]就好.





\([Code:]\)

#include<iostream>
#include<cstdio>
#include<queue>
using namespace std; const int MAXN = 500000 + 1; int n, m;
int a[MAXN];
int sum[MAXN], f[MAXN]; struct Node {
int v, pos;
}; deque<int> q; inline int read() {
int x=0, f=1; char ch=getchar();
while(ch<'0' || ch>'9') {
if(ch == '-') f = -1;
ch = getchar();
}
while(ch>='0' && ch<='9')
x=(x<<3)+(x<<1)+ch-48, ch=getchar();
return x * f;
} int main() {
n = read(), m = read();
for(int i=1; i<=n; ++i) {
a[i] = read();
sum[i] = a[i] + sum[i - 1];
}
for(int i=1; i<=n; ++i) {
while(!q.empty() && sum[q.back()] > sum[i])
q.pop_back();
q.push_back(i);
while(q.front()+m < i) q.pop_front();
f[i] = sum[i] - sum[q.front()];
}
int ans = 1 << 31;
for(int i=1; i<=n; ++i) ans = max(ans, f[i]);
printf("%d\n", ans);
}

【洛谷】【动态规划+单调队列】P1714 切蛋糕的更多相关文章

  1. 洛谷 P1714 切蛋糕 单调队列

    这个题比较显然,要用前缀和来做.但只用前缀和是过不去的,会TLE,所以需要进行优化. 对于每个前缀和数组 b 中的元素,都可以找到以 b[i] 结尾的子段最大值 p[i],显然,最终的 ans 就是 ...

  2. 洛谷 P1714 切蛋糕 题解

    P1714 切蛋糕 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每小块都有对应的幸运值. 小Z作为寿星,自然希望吃到的第一块蛋糕的幸运 ...

  3. 洛谷P1714 切蛋糕(单调队列)

    先放代码...... 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=5e5+10,M=0x3f3f3f3f; ...

  4. 洛谷—— P1714 切蛋糕

    https://www.luogu.org/problem/show?pid=1714 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每 ...

  5. 【洛谷】【动态规划+单调队列】P1725 琪露诺

    [题目描述:] 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到河 ...

  6. [洛谷P1714]切蛋糕

    题目大意:给你n个整数,求出其中长度不超过m的最大字段和. 题解:单调队列维护前缀和最小值,然后用当前值减去当前有效最小值即可 C++ Code: #include<cstdio> usi ...

  7. luogu P1714 切蛋糕 单调队列

    单调队列傻题. 考虑以 $i$ 结尾的答案 : $max(sumv_{i}-sumv_{j}),j \in [i-m,i-1]$ ($sumv_{i}$ 为前缀和) 稍微搞一搞,发现 $sumv_{i ...

  8. 洛谷P1714切蛋糕

    题目 该题目就是求这n个数的前缀和所组成的数组的所有子区间的左端点和右端点相差不超过m,且他们的前缀和差最大,求出这个最大值即可. 而朴素算法肯定会T,而我们发现如果前缀和最大的话,则前缀和的值一定是 ...

  9. P1714 切蛋糕 dp+单调队列

    题意: 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到 ...

随机推荐

  1. [EWS]如何: 通过使用 Exchange 中的 EWS 流有关邮箱事件的通知

    摘要 在之前的文章中,介绍ews拉通知的模式订阅邮件.详情可阅读这篇文章:EWS 通过SubscribeToPullNotifications订阅Exchange新邮件提醒 ,可以看到拉通知的模式,是 ...

  2. Oracle11g自带的SQL_developer无法打开

    在安装完Oracle Database 11g Release 2数据库,想试一下Oracle自带的SQL DeveloperW工具,在操作系统菜单的所有程序中找到SQL Developer如下所示, ...

  3. Java并发编程-Executor框架集

    Executor框架集对线程调度进行了封装,将任务提交和任务执行解耦. 它提供了线程生命周期调度的所有方法,大大简化了线程调度和同步的门槛. Executor框架集的核心类图如下: 从上往下,可以很清 ...

  4. 浅谈Http协议是怎么回事?

    老实说关于http协议这个概念,见到最多的还是各类招聘信息.在平时的工作中,除了了解一些请求,响应,请求头这些概念外,对于http协议也没有太多的关心.因为貌似对平时的工作没有什么影响,所以在写这篇关 ...

  5. eclipse连接VisualSVN Server

    1.下载安装VisualSVN Server 2.修改资源库的网络连接.去掉默认的选中,修改端口,点击ok. 3.新建资源库Test,显示连接的地址http://svnybb/svn/Test/ .之 ...

  6. 在Windows上搭建kafka环境

    英文文档:https://dzone.com/articles/running-apache-kafka-on-windows-os 第一步:安装JDK 百度很多,不赘述 第二步:安装ZooKeepe ...

  7. Velocity快速入门

    Velocity 介绍 Velocity是一个基于java的模板引擎.它允许任何人使用简单但功能强大的模板语言引用Java代码中定义的对象. 当Velocity用于web开发时,web设计人员可以与J ...

  8. 第二十九天- socketserver模块 ftp上传

    1.socketserver模块: socketserver,它提供了服务器中心类,可简化网络服务器的开发,内部使用IO多路复用以及“多线程”和“多进程”,从而实现并发处理多个客户端请求的socket ...

  9. jquery插件-fullpage.js

    1⃣️ 简介 fullPage.js 是一个基于 jQuery 的插件,它能够很方便.很轻松的制作出全屏网站,主要功能有: 支持鼠标滚动 支持前进后退和键盘控制 多个回调函数 支持手机.平板触摸事件 ...

  10. Vue.js $nextTick

    最近在学习vue.js.了解1.x的基础上再学习2.x的vue.两个版本的确是不会像angular这样1.x和2.x相差甚远.所以学习起来其实还是有很大的关联.但是,终归来说.两者还是有语法上的细微差 ...