mapreduce深入剖析5大视频
参考代码
TVPlayCount.java
- package com.dajiangtai.hadoop.tvplay;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.conf.Configured;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
- import org.apache.hadoop.mapreduce.lib.output.MultipleOutputs;
- import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
- import org.apache.hadoop.util.Tool;
- import org.apache.hadoop.util.ToolRunner;
- import com.sun.org.apache.bcel.internal.generic.NEW;
- public class TVPlayCount extends Configured implements Tool{
- public static class TVPlayMapper extends Mapper<Text, TVPlayData, Text, TVPlayData>{
- @Override
- protected void map(Text key, TVPlayData value,Context context)
- throws IOException, InterruptedException
- {
- context.write(key, value);
- }
- }
- public static class TVPlayReducer extends Reducer<Text, TVPlayData, Text, Text>
- {
- private Text m_key=new Text();
- private Text m_value = new Text();
- private MultipleOutputs<Text, Text> mos;
- //将多路输出打开
- protected void setup(Context context) throws IOException,InterruptedException
- {
- mos = new MultipleOutputs<Text, Text>(context);
- }
- protected void reduce (Text Key,Iterable<TVPlayData> Values, Context context)
- throws IOException, InterruptedException{
- int daynumber = ;
- int collectnumber = ;
- int commentnumber = ;
- int againstnumber = ;
- int supportnumber = ;
- for (TVPlayData tv : Values){
- daynumber+=tv.getDaynumber();
- collectnumber+=tv.getCollectnumber();
- commentnumber += tv.getCommentnumber();
- againstnumber += tv.getAgainstnumber();
- supportnumber += tv.getSupportnumber();
- }
- String[] records=Key.toString().split("\t");
- // 1优酷 2搜狐 3 土豆 4爱奇艺 5迅雷看看
- String source =records[]; // 媒体类别
- m_key.set(records[]);
- m_value.set(daynumber+"\t"+collectnumber+"\t" +commentnumber+"\t"+againstnumber+"\t"+supportnumber);
- if(source.equals("")){
- mos.write("youku", m_key, m_value);
- }else if (source.equals("")) {
- mos.write("souhu", m_key, m_value);
- } else if (source.equals("")) {
- mos.write("tudou", m_key, m_value);
- } else if (source.equals("")) {
- mos.write("aiqiyi", m_key, m_value);
- } else if (source.equals("")) {
- mos.write("xunlei", m_key, m_value);
- }
- }
- //关闭 MultipleOutputs,也就是关闭 RecordWriter,并且是一堆 RecordWriter,因为这里会有很多 reduce 被调用。
- protected void cleanup( Context context) throws IOException,InterruptedException {
- mos.close();
- }
- }
- @Override
- public int run(String[] args) throws Exception {
- Configuration conf = new Configuration(); // 配置文件对象
- Path mypath = new Path(args[]);
- FileSystem hdfs = mypath.getFileSystem(conf);// 创建输出路径
- if (hdfs.isDirectory(mypath)) {
- hdfs.delete(mypath, true);
- }
- Job job = new Job(conf, "tvplay");// 构造任务
- job.setJarByClass(TVPlayCount.class);// 设置主类
- job.setMapperClass(TVPlayMapper.class);// 设置Mapper
- job.setMapOutputKeyClass(Text.class);// key输出类型
- job.setMapOutputValueClass(TVPlayData.class);// value输出类型
- job.setInputFormatClass(TVPlayInputFormat.class);//自定义输入格式
- job.setReducerClass(TVPlayReducer.class);// 设置Reducer
- job.setOutputKeyClass(Text.class);// reduce key类型
- job.setOutputValueClass(Text.class);// reduce value类型
- // 自定义文件输出格式,通过路径名(pathname)来指定输出路径
- MultipleOutputs.addNamedOutput(job, "youku", TextOutputFormat.class,
- Text.class, Text.class);
- MultipleOutputs.addNamedOutput(job, "souhu", TextOutputFormat.class,
- Text.class, Text.class);
- MultipleOutputs.addNamedOutput(job, "tudou", TextOutputFormat.class,
- Text.class, Text.class);
- MultipleOutputs.addNamedOutput(job, "aiqiyi", TextOutputFormat.class,
- Text.class, Text.class);
- MultipleOutputs.addNamedOutput(job, "xunlei", TextOutputFormat.class,
- Text.class, Text.class);
- FileInputFormat.addInputPath(job, new Path(args[]));// 输入路径
- FileOutputFormat.setOutputPath(job, new Path(args[]));// 输出路径
- job.waitForCompletion(true);
- return ;
- }
- public static void main(String[] args) throws Exception{
- String[] args0={"hdfs://master:9000/tvplay/",
- "hdfs://master:9000/tvplay/out"};
- int ec = ToolRunner.run(new Configuration(), new TVPlayCount(), args0);
- System.exit(ec);
- }
- }
TVPlayData.java
- package com.dajiangtai.hadoop.tvplay;
- import java.io.DataInput;
- import java.io.DataOutput;
- import java.io.IOException;
- import org.apache.hadoop.io.WritableComparable;
- /**
- *
- * @author yangjun
- * @function 自定义对象
- */
- public class TVPlayData implements WritableComparable<Object>{
- private int daynumber;
- private int collectnumber;
- private int commentnumber;
- private int againstnumber;
- private int supportnumber;
- public TVPlayData(){}
- public void set(int daynumber,int collectnumber,int commentnumber,int againstnumber,int supportnumber){
- this.daynumber = daynumber;
- this.collectnumber = collectnumber;
- this.commentnumber = commentnumber;
- this.againstnumber = againstnumber;
- this.supportnumber = supportnumber;
- }
- public int getDaynumber() {
- return daynumber;
- }
- public void setDaynumber(int daynumber) {
- this.daynumber = daynumber;
- }
- public int getCollectnumber() {
- return collectnumber;
- }
- public void setCollectnumber(int collectnumber) {
- this.collectnumber = collectnumber;
- }
- public int getCommentnumber() {
- return commentnumber;
- }
- public void setCommentnumber(int commentnumber) {
- this.commentnumber = commentnumber;
- }
- public int getAgainstnumber() {
- return againstnumber;
- }
- public void setAgainstnumber(int againstnumber) {
- this.againstnumber = againstnumber;
- }
- public int getSupportnumber() {
- return supportnumber;
- }
- public void setSupportnumber(int supportnumber) {
- this.supportnumber = supportnumber;
- }
- @Override
- public void readFields(DataInput in) throws IOException {
- daynumber = in.readInt();
- collectnumber = in.readInt();
- commentnumber = in.readInt();
- againstnumber = in.readInt();
- supportnumber = in.readInt();
- }
- @Override
- public void write(DataOutput out) throws IOException {
- out.writeInt(daynumber);
- out.writeInt(collectnumber);
- out.writeInt(commentnumber);
- out.writeInt(againstnumber);
- out.writeInt(supportnumber);
- }
- @Override
- public int compareTo(Object o) {
- return ;
- };
- }
TVPlayInputFormat.java
- package com.dajiangtai.hadoop.tvplay;
- import java.io.IOException;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.fs.FSDataInputStream;
- import org.apache.hadoop.fs.FileSystem;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.InputSplit;
- import org.apache.hadoop.mapreduce.RecordReader;
- import org.apache.hadoop.mapreduce.TaskAttemptContext;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.input.FileSplit;
- import org.apache.hadoop.util.LineReader;
- /**
- *
- * @author yangjun
- * @function key vlaue 输入格式
- */
- public class TVPlayInputFormat extends FileInputFormat<Text,TVPlayData>{
- @Override
- public RecordReader<Text, TVPlayData> createRecordReader(InputSplit input,
- TaskAttemptContext context) throws IOException, InterruptedException {
- return new TVPlayRecordReader();
- }
- public class TVPlayRecordReader extends RecordReader<Text, TVPlayData>{
- public LineReader in;
- public Text lineKey;
- public TVPlayData lineValue;
- public Text line;
- @Override
- public void close() throws IOException {
- if(in !=null){
- in.close();
- }
- }
- @Override
- public Text getCurrentKey() throws IOException, InterruptedException {
- return lineKey;
- }
- @Override
- public TVPlayData getCurrentValue() throws IOException, InterruptedException {
- return lineValue;
- }
- @Override
- public float getProgress() throws IOException, InterruptedException {
- return ;
- }
- @Override
- public void initialize(InputSplit input, TaskAttemptContext context)
- throws IOException, InterruptedException {
- FileSplit split=(FileSplit)input;
- Configuration job=context.getConfiguration();
- Path file=split.getPath();
- FileSystem fs=file.getFileSystem(job);
- FSDataInputStream filein=fs.open(file);
- in=new LineReader(filein,job);
- line=new Text();
- lineKey=new Text();
- lineValue = new TVPlayData();
- }
- @Override
- public boolean nextKeyValue() throws IOException, InterruptedException {
- int linesize=in.readLine(line);
- if(linesize==) return false;
- String[] pieces = line.toString().split("\t");
- if(pieces.length != ){
- throw new IOException("Invalid record received");
- }
- lineKey.set(pieces[]+"\t"+pieces[]);
- lineValue.set(Integer.parseInt(pieces[]),Integer.parseInt(pieces[]),Integer.parseInt(pieces[])
- ,Integer.parseInt(pieces[]),Integer.parseInt(pieces[]));
- return true;
- }
- }
- }
先启动3节点集群
与自己在本地搭建的3节点集群的hdfs连接上
在终端显示的运行结果,程序没有错误
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - session.id is deprecated. Instead, use dfs.metrics.session-id
- -- ::, INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
- -- ::, WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
- -- ::, WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
- -- ::, INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process :
- -- ::, INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - user.name is deprecated. Instead, use mapreduce.job.user.name
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.mapoutput.value.class is deprecated. Instead, use mapreduce.map.output.value.class
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.job.name is deprecated. Instead, use mapreduce.job.name
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapreduce.inputformat.class is deprecated. Instead, use mapreduce.job.inputformat.class
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.mapoutput.key.class is deprecated. Instead, use mapreduce.map.output.key.class
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
- -- ::, INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local300699497_0001
- -- ::, WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/staging/Administrator300699497/.staging/job_local300699497_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring.
- -- ::, WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/staging/Administrator300699497/.staging/job_local300699497_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
- -- ::, WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/job_local300699497_0001/job_local300699497_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring.
- -- ::, WARN [org.apache.hadoop.conf.Configuration] - file:/tmp/hadoop-Administrator/mapred/local/localRunner/Administrator/job_local300699497_0001/job_local300699497_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local300699497_0001
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local300699497_0001_m_000000_0
- -- ::, INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
- -- ::, INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@1b9156ad
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - Processing split: hdfs://master:9000/tvplay/tvplay.txt:0+10833923
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - Job job_local300699497_0001 running in uber mode : false
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - map % reduce %
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) kvi ()
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb:
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - soft limit at
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - bufstart = ; bufvoid =
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - kvstart = ; length =
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] -
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - bufstart = ; bufend = ; bufvoid =
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - kvstart = (); kvend = (); length = /
- -- ::, INFO [org.apache.hadoop.mapred.MapTask] - Finished spill
- -- ::, INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local300699497_0001_m_000000_0 is done. And is in the process of committing
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
- -- ::, INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local300699497_0001_m_000000_0' done.
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local300699497_0001_m_000000_0
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - Map task executor complete.
- -- ::, INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
- -- ::, INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@fba110e
- -- ::, INFO [org.apache.hadoop.mapred.Merger] - Merging sorted segments
- -- ::, INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with segments left of total size: bytes
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] -
- -- ::, INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - map % reduce %
- -- ::, INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local300699497_0001_r_000000_0 is done. And is in the process of committing
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] -
- -- ::, INFO [org.apache.hadoop.mapred.Task] - Task attempt_local300699497_0001_r_000000_0 is allowed to commit now
- -- ::, INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task 'attempt_local300699497_0001_r_000000_0' to hdfs://master:9000/tvplay/out/_temporary/0/task_local300699497_0001_r_000000
- -- ::, INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
- -- ::, INFO [org.apache.hadoop.mapred.Task] - Task 'attempt_local300699497_0001_r_000000_0' done.
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - map % reduce %
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - Job job_local300699497_0001 completed successfully
- -- ::, INFO [org.apache.hadoop.mapreduce.Job] - Counters:
- File System Counters
- FILE: Number of bytes read=
- FILE: Number of bytes written=
- FILE: Number of read operations=
- FILE: Number of large read operations=
- FILE: Number of write operations=
- HDFS: Number of bytes read=
- HDFS: Number of bytes written=
- HDFS: Number of read operations=
- HDFS: Number of large read operations=
- HDFS: Number of write operations=
- Map-Reduce Framework
- Map input records=
- Map output records=
- Map output bytes=
- Map output materialized bytes=
- Input split bytes=
- Combine input records=
- Combine output records=
- Reduce input groups=
- Reduce shuffle bytes=
- Reduce input records=
- Reduce output records=
- Spilled Records=
- Shuffled Maps =
- Failed Shuffles=
- Merged Map outputs=
- GC time elapsed (ms)=
- CPU time spent (ms)=
- Physical memory (bytes) snapshot=
- Virtual memory (bytes) snapshot=
- Total committed heap usage (bytes)=
- File Input Format Counters
- Bytes Read=
- File Output Format Counters
- Bytes Written=
查看hdfs上的输出结果
mapreduce深入剖析5大视频的更多相关文章
- 如何使用油猴脚本不要vip就能观看各大视频网站如腾讯,爱奇艺等的vip视频
如何使用油猴脚本不要vip就能观看各大视频网站如腾讯,爱奇艺等的vip视频 首先打开谷歌商店(这里需要fq,如不能fq的小伙伴请看上面写的Chrome怎么访问外网) 搜索Tampermonkey,点击 ...
- 关于大视频video播放的问题以及解决方案(m3u8的播放)
在HTML5里,提供了<video>标签,可以直接播放视频,video的使用很简单: <video width="320" height="240&qu ...
- 详细剖析pyecharts大屏的Page函数配置文件:chart_config.json
目录 一.问题背景 二.揭开json文件神秘面纱 三.巧用json文件 四.关于Table图表 五.同步讲解视频 5.1 讲解json的视频 5.2 讲解全流程大屏的视频 5.3 讲解全流程大屏的文章 ...
- 百度编辑器上传大视频报http请求错误怎么办
百度编辑器UEditor是由百度web前端研发部开发所见即所得富文本web编辑器,具有轻量,可定制,注重用户体验等特点,开源基于MIT协议,允许自由使用和修改代码,所以受到很多开放人员的青睐.但是有时 ...
- 深度剖析 | 基于大数据架构的BI应用
说起互联网.电商的数据分析,更多的是谈应用案例,如何去实践数据化管理运营.而这里,我们要从技术角度分享关于数据的技术架构干货,如何应用BI. 原文是云猴网BI总经理王卫东在帆软大数据上的演讲,以下是整 ...
- 简单获取各大视频网站的flash地址
最近做网站的时候遇到一个需求:给定一个视频地址,获取它的swf地址.例如,给一个优酷的视频地址:http://v.youku.com /v_show/id_XNDg4MzY5ODU2.html,想获取 ...
- webUploader上传大视频文件相关web.config配置
在webuploader上传大文件时必须配置一下,不然请求后台处理程序时,会请求超时.出现404! <system.web> <httpRuntime maxRequestLengt ...
- java大视频上传实现
理清思路: 引入了两个概念:块(block)和片(chunk).每个块由一到多个片组成,而一个资源则由一到多个块组成 块是服务端的永久数据存储单位,片则只在分片上传过程中作为临时存储的单位.服务端会以 ...
- php+大视频文件上传+进度条
该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开始. 如何分 ...
随机推荐
- C语言面试题1
1.分析下面代码有什么问题? 1 2 3 4 5 6 void test1() { char string[10]; char* str1 = "0123456789"; s ...
- video conference s/w
CamFrogWindows | Mac OS | Linux (Server only) | iOS | Android | Windows PhoneCamFrog lets you set up ...
- taro 微信小程序原生作用域获取
在 Taro 的页面和组件类中,this 指向的是 Taro页面或组件实例. 但是一般我们需要获取 Taro的页面和组件 所对应的 小程序原生页面和组件实例,这个时候我们可以通过 this.$scop ...
- EnvironmentError: mysql_config not found问题解决(centos7下python安装mysql-python)
centos7下python安装mysql-python模块,执行命令: pip install mysql-python 出现报错:EnvironmentError: mysql_config no ...
- golang gorilla websocket例子
WebSocket协议是基于TCP的一种新的网络协议.它实现了浏览器与服务器全双工(full-duplex)通信--允许服务器主动发送信息给客户端. WebSocket通信协议于2011年被IETF定 ...
- 【转】Linux安装HDF5及遇到的问题总结
Linux安装HDF5及遇到的问题总结 转自: http://www.linuxdiyf.com/linux/26164.html ubuntu版本:16.04.2 64位 从HDF官网(http ...
- 阿里巴巴Java编码规范,来测测你能得多少分
今年年初,<阿里巴巴Java开发手册>正式发布,阿里官方Java代码规范标准首次对外公开.手册发布之后在业界.学术界都获得了广泛的关注,仅微博浏览量就突破千万,下载访问量超过40万,多家媒 ...
- 基于OLSR的路由协议实现Ad-Hoc组网
一.软件包的安装 1. olsrd软件包的安装 libpthread_0.9.33.2-1_ar71xx.ipk olsrd_0.6.6.2-4_ar71xx.ipk 2. luci的安装 olsrd ...
- js 实现滚动字幕
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Windows消息【一】 消息队列
看了MSDN后,以下是我个人的理解! 消息能够被分为「队列化消息」和「非队列化消息」. 队列化消息是指当程序发生某事件时,由Windows主动捕获并把消息放入系统消息队列中,而程序在运行时会初始化一个 ...