CF995F Cowmpany Cowmpensation


Solution

这道题目可以看出我的代码能力是有多渣(代码能力严重退化)

我们先考虑dp,很容易写出方程:

设\(f_{i,j}\)表示以\(i\)为根的子树中\(i\)的值为\(j\),那么转移为:
\[
\begin{aligned}
f_{i,j}=\prod_{v\in son_u}\sum_{k=1}^j{f_{v,j}}
\end{aligned}
\]

这个东西很明显可以前缀和优化变成\(O(n^2)\)的求解.

当然不会告诉你我dp写挂了然后身败名裂啊

发现进一步的优化.

这个东西如果全用前缀和搞起来不就很像一个函数了?(把每一项出现的拆开考虑)

emmm,好像是的.

那么显然这个东西可以通过点值确定这个函数,然后就是喜闻乐见的拉格朗日插值了.

但是为什么可以成为一个可确定性的函数呢(就是复杂度比较合适).

考虑叶子节点如果有的话肯定是一次函数.

emmm,如果深度增加,显然就会高一次.

深度最大是\(n\),所以应该只要确定\(n\)个点就可以了.

那么就很愉快的写完了.

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
#include<iostream>
using namespace std;
#define ll long long
#define re register
#define file(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout)
#define int ll
inline int gi()
{
    int f=1,sum=0;char ch=getchar();
    while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0' && ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
    return f*sum;
}
const int N=3010,Mod=1e9+7;
int dp[N][N],front[N],to[N<<1],nxt[N<<1],cnt,sum[N][N],n,x[N],y[N];
int Pow(int a,int b)
{
    int ret=1;
    while(b)
    {
        if(b&1)ret=(ret*a)%Mod;
        a=(a*a)%Mod;b>>=1;
    }
    return ret;
}
int lalr(int k)
{
    int ans=0;
    for(int i=1;i<=n;i++)
    {
        int Up=1,Down=1;
        for(int j=0;j<=n;j++)
            if(i!=j)
            {
                (Up*=(k-x[j]))%=Mod;
                (Down*=(x[i]-x[j]))%=Mod;
            }
        (ans+=(y[i]*Up)%Mod*Pow(Down,Mod-2))%=Mod;
    }
    return ans;
}
void Add(int u,int v)
{
    to[++cnt]=v;nxt[cnt]=front[u];front[u]=cnt;
}
void dfs(int u)
{
    for(int i=1;i<=n;i++)dp[u][i]=1;
    for(int i=front[u];i;i=nxt[i])
    {
        int v=to[i];
        dfs(v);
        for(int j=1;j<=n;j++)
            dp[u][j]=(ll)dp[u][j]*dp[v][j]%Mod;
    }
    for(int i=1;i<=n;i++)
        dp[u][i]=(dp[u][i]+dp[u][i-1])%Mod;
}
void init()
{
    dfs(1);
}
signed main()
{
    int d;
    n=gi();d=gi();
    for(int i=2;i<=n;i++)
    {
        int Fa=gi();
        Add(Fa,i);
    }
    init();
    if(d<=n)return printf("%lld\n",dp[1][d]),0;
    for(int i=1;i<=n;i++)x[i]=i,y[i]=dp[1][i];
    printf("%lld\n",lalr(d));
    return 0;
}

【CF995F】 Cowmpany Cowmpensation的更多相关文章

  1. 【CF995F】Cowmpany Cowmpensation(动态规划,拉格朗日插值)

    [CF995F]Cowmpany Cowmpensation(多项式插值) 题面 洛谷 CF 题解 我们假装结果是一个关于\(D\)的\(n\)次多项式, 那么,先\(dp\)暴力求解颜色数为\(0. ...

  2. 【CF995F】Cowmpany Cowmpensation

    [CF995F]Cowmpany Cowmpensation 题面 树形结构,\(n\)个点,给每个节点分配工资\([1,d]\),子节点不能超过父亲节点的工资,问有多少种分配方案 其中\(n\leq ...

  3. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  4. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  5. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  6. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  7. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  8. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  9. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

随机推荐

  1. Activiti任务认领

    Activiti任务认领 TaskService taskService; taskService.setAssignee(String taskId, String userId);taskServ ...

  2. Scrapy的安装和基本使用方法

    Scrapy的安装 1. Windows下安装流程: 方法一: 命令行执行pip install scrapy 安装scrapy 注意:如果有anaconda,也可以打开“Anaconda promp ...

  3. SpringBoot定制修改Servlet容器

    1.如何修改Servlet容器的相关配置: 第一种:在application.properties中修改和server有关的配置(ServerProperties提供): server.port=80 ...

  4. SpringBoot的读取properties文件的方式

    转载:https://www.imooc.com/article/18252一.@ConfigurationProperties方式 自定义配置类:PropertiesConfig.java pack ...

  5. 旅行家的预算(NOIP1999&水题测试2017082301)

    题目链接:旅行家的预算 这题还可以,不算太水. 这题贪心即可. 我们采取如下动作: 如果在装满油的情况下能到达的范围内,没有加油站,则无解. 如果在装满油的情况下能到达的范围内,油价最低的加油站的油价 ...

  6. 2018.10.30 NOIP模拟 字胡串(单调栈+容斥)

    传送门 对于每个点,用单调栈求出它左右第一个比他大的位置. 然后对每个点O(logai)O(log_{a_i})O(logai​​)求出第一个拥有跟它不同二进制位的位置. 然后容斥一下就行了. 代码

  7. jQuery 常用效果

    hide和show 同样有 fadeInhe fadeOut 的功能 $(document).ready(function(){ $("#hide").click(function ...

  8. hdu-1042(大数+万进制)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1042 参考文章:https://blog.csdn.net/tigerisland45/article ...

  9. SQL MAP 注入测试

    SQL MAP是一款测试系统是否有SQL漏洞的工具 下载地址: http://sqlmap.org/ sqlmap 是一款使用python编写的工具,所以需要安装python,需要安装python 为 ...

  10. java常用设计模式十:模板模式

    一.定义 定义一个操作中的算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤. 如果上面的话不好理解,请看下面的例子 二.示例 1)定义一个模 ...