大熊猫10分钟

这是对熊猫的简短介绍,主要面向新用户。您可以在Cookbook中看到更复杂的食谱

通常,我们导入如下:

In [1]: import numpy as np

In [2]: import pandas as pd

对象创建

请参阅数据结构简介部分

创建一个Series通过传递值的列表,让大熊猫创建一个默认的整数索引:

In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])

In [4]: s
Out[4]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64

DataFrame通过传递带有日期时间索引和标记列的NumPy数组来创建:

In [5]: dates = pd.date_range('20130101', periods=6)

In [6]: dates
Out[6]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) In [8]: df
Out[8]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

DataFrame通过传递可以转换为类似系列的对象的dict来创建。

In [9]: df2 = pd.DataFrame({'A': 1.,
...: 'B': pd.Timestamp('20130102'),
...: 'C': pd.Series(1, index=list(range(4)), dtype='float32'),
...: 'D': np.array([3] * 4, dtype='int32'),
...: 'E': pd.Categorical(["test", "train", "test", "train"]),
...: 'F': 'foo'})
...: In [10]: df2
Out[10]:
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo

结果的列DataFrame具有不同的 dtypes

In [11]: df2.dtypes
Out[11]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object

如果您正在使用IPython,则会自动启用列名称(以及公共属性)的选项卡完成。以下是将要完成的属性的子集:

In [12]: df2.<TAB>  # noqa: E225, E999
df2.A df2.bool
df2.abs df2.boxplot
df2.add df2.C
df2.add_prefix df2.clip
df2.add_suffix df2.clip_lower
df2.align df2.clip_upper
df2.all df2.columns
df2.any df2.combine
df2.append df2.combine_first
df2.apply df2.compound
df2.applymap df2.consolidate
df2.D

正如你所看到的,列ABC,和D自动标签完成。E也有; 为简洁起见,其他属性已被截断。

查看数据

请参阅“ 基础”部分

以下是查看框架的顶行和底行的方法:

In [13]: df.head()
Out[13]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [14]: df.tail(3)
Out[14]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

显示索引,列:

In [15]: df.index
Out[15]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [16]: df.columns
Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy()给出基础数据的NumPy表示。请注意,当您DataFrame拥有不同数据类型的列时,他的操作可能很昂贵,这可归结为pandas和NumPy之间的根本差异:NumPy数组对整个数组有一个dtype,而pandas DataFrames每列有一个dtype。当你打电话时 DataFrame.to_numpy(),pandas会找到可以容纳 DataFrame中所有 dtypes 的NumPy dtype。这可能最终成为object,这需要将每个值都转换为Python对象。

因为df,我们DataFrame的所有浮点值 DataFrame.to_numpy()都很快,不需要复制数据。

In [17]: df.to_numpy()
Out[17]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])

因为df2DataFrame具有多个dtypes, DataFrame.to_numpy()相对昂贵。

In [18]: df2.to_numpy()
Out[18]:
array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)

注意

DataFrame.to_numpy()没有包括在输出的索引或列标签。

describe() 显示数据的快速统计摘要:

In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

转置您的数据:

In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

按轴排序:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按值排序:

In [22]: df.sort_values(by='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

选择

注意

虽然标准的Python / numpy的表达式选择和设置直观,派上用场的互动工作,为生产代码,我们建议优化的熊猫数据访问方法,.at.iat, .loc.iloc

请参阅索引文档索引和选择数据以及MultiIndex / Advanced索引

获得

选择一个列,产生一个Series,相当于df.A

In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

选择via [],对行进行切片。

In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

按标签选择

标签选择中查看更多信息。

使用标签获取横截面:

In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

按标签选择多轴:

In [27]: df.loc[:, ['A', 'B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

显示标签切片,两个端点包括

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

减少返回对象的尺寸:

In [29]: df.loc['20130102', ['A', 'B']]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

获取标量值:

In [30]: df.loc[dates[0], 'A']
Out[30]: 0.46911229990718628

为了快速访问标量(相当于以前的方法):

In [31]: df.at[dates[0], 'A']
Out[31]: 0.46911229990718628

按位置选择

Position by Position中查看更多信息。

通过传递的整数的位置选择:

In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

通过整数切片,类似于numpy / python:

In [33]: df.iloc[3:5, 0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

通过整数位置位置列表,类似于numpy / python样式:

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

对于明确切片行:

In [35]: df.iloc[1:3, :]
Out[35]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

对于明确切片列:

In [36]: df.iloc[:, 1:3]
Out[36]:
B C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215 0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05 0.567020 0.276232
2013-01-06 0.113648 -1.478427

为了明确获取值:

In [37]: df.iloc[1, 1]
Out[37]: -0.17321464905330858

为了快速访问标量(相当于以前的方法):

In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858

布尔索引

使用单个列的值来选择数据。

In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

从满足布尔条件的DataFrame中选择值。

In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988

使用isin()过滤方法:

In [41]: df2 = df.copy()

In [42]: df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three']

In [43]: df2
Out[43]:
A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2['E'].isin(['two', 'four'])]
Out[44]:
A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

设定

设置新列会自动根据索引对齐数据。

In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64 In [47]: df['F'] = s1

按标签设置值:

In [48]: df.at[dates[0], 'A'] = 0

按位置设置值:

In [49]: df.iat[0, 1] = 0

通过使用NumPy数组进行设置:

In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

先前设置操作的结果。

In [51]: df
Out[51]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
2013-01-05 -0.424972 0.567020 0.276232 5 4.0
2013-01-06 -0.673690 0.113648 -1.478427 5 5.0

一个where与设置操作。

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺少数据

pandas主要使用该值np.nan来表示缺失的数据。默认情况下,它不包含在计算中。请参阅缺失数据部分

重建索引允许您更改/添加/删除指定轴上的索引。这将返回数据的副本。

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1

In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

删除任何缺少数据的行。

In [58]: df1.dropna(how='any')
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

填写缺失的数据。

In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

获取值所在的布尔掩码nan

In [60]: pd.isna(df1)
Out[60]:
A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True

操作

请参阅二进制运算基本部分

统计

操作通常排除丢失的数据。

执行描述性统计:

In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64

另一个轴上的操作相同:

In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64

使用具有不同维度且需要对齐的对象进行操作。此外,pandas会自动沿指定维度进行广播。

In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

In [64]: s
Out[64]:
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1.0
2013-01-04 3.0
2013-01-05 5.0
2013-01-06 NaN
Freq: D, dtype: float64 In [65]: df.sub(s, axis='index')
Out[65]:
A B C D F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
2013-01-06 NaN NaN NaN NaN NaN

申请

将函数应用于数据:

In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

直方图

直方图和离散化中查看更多信息。

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int64 In [70]: s.value_counts()
Out[70]:
4 5
6 2
2 2
1 1
dtype: int64

字符串方法

Series在str 属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,如下面的代码片段所示。请注意,str中的模式匹配通常默认使用正则表达式(在某些情况下总是使用它们)。在Vectorized String Methods中查看更多信息。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

合并

CONCAT

pandas提供了各种工具,可以轻松地将Series,DataFrame和Panel对象与各种设置逻辑组合在一起,用于索引和关联代数功能(在连接/合并类型操作的情况下)。

请参阅合并部分

将pandas对象连接在一起concat()

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

加入

SQL样式合并。请参阅数据库样式连接部分。

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2 In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5 In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

另一个例子是:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [84]: left
Out[84]:
key lval
0 foo 1
1 bar 2 In [85]: right
Out[85]:
key rval
0 foo 4
1 bar 5 In [86]: pd.merge(left, right, on='key')
Out[86]:
key lval rval
0 foo 1 4
1 bar 2 5

追加

将行附加到数据框。请参阅“ 附加” 部分。

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])

In [88]: df
Out[88]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True)
Out[90]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610

分组

通过“分组依据”,我们指的是涉及以下一个或多个步骤的过程:

  • 根据某些标准将数据拆分为组
  • 功能独立应用于每个组
  • 结果组合成数据结构

请参阅分组部分

In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B': ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C': np.random.randn(8),
....: 'D': np.random.randn(8)})
....: In [92]: df
Out[92]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033

分组然后将sum()函数应用于结果组。

In [93]: df.groupby('A').sum()
Out[93]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

按多列分组形成分层索引,我们再次可以应用该sum功能。

In [94]: df.groupby(['A', 'B']).sum()
Out[94]:
C D
A B
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434

重塑

请参阅有关分层索引和 重塑的部分。

堆栈

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....: 'foo', 'foo', 'qux', 'qux'],
....: ['one', 'two', 'one', 'two',
....: 'one', 'two', 'one', 'two']]))
....: In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B']) In [98]: df2 = df[:4] In [99]: df2
Out[99]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230

stack()方法“压缩”DataFrame列中的级别。

In [100]: stacked = df2.stack()

In [101]: stacked
Out[101]:
first second
bar one A 0.029399
B -0.542108
two A 0.282696
B -0.087302
baz one A -1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype: float64

使用“堆叠”DataFrame或Series(具有MultiIndexas index),stack()is 的逆操作,unstack()默认情况下取消堆叠最后一级

In [102]: stacked.unstack()
Out[102]:
A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230 In [103]: stacked.unstack(1)
Out[103]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230 In [104]: stacked.unstack(0)
Out[104]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230

数据透视表

请参阅数据透视表部分。

In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
.....: 'B': ['A', 'B', 'C'] * 4,
.....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D': np.random.randn(12),
.....: 'E': np.random.randn(12)})
.....: In [106]: df
Out[106]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115

我们可以非常轻松地从这些数据生成数据透视表:

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826

时间序列

pandas具有简单,强大且高效的功能,用于在频率转换期间执行重采样操作(例如,将第二数据转换为5分钟数据)。这在财务应用程序中非常常见,但不仅限于此。请参阅时间序列部分

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [110]: ts.resample('5Min').sum()
Out[110]:
2012-01-01 25083
Freq: 5T, dtype: int64

时区代表:

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [113]: ts
Out[113]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64 In [114]: ts_utc = ts.tz_localize('UTC') In [115]: ts_utc
Out[115]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64

转换为另一个时区:

In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64

在时间跨度表示之间转换:

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [119]: ts
Out[119]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64 In [120]: ps = ts.to_period() In [121]: ps
Out[121]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64 In [122]: ps.to_timestamp()
Out[122]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64

在句点和时间戳之间进行转换可以使用一些方便的算术函数。在下面的示例中,我们将季度频率与11月结束的年度转换为季度结束后的月末的上午9点:

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [126]: ts.head()
Out[126]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64

分类

大熊猫可以在a中包含分类数据DataFrame。有关完整文档,请参阅 分类简介API文档

In [127]: df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
.....: "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
.....:

将原始成绩转换为分类数据类型。

In [128]: df["grade"] = df["raw_grade"].astype("category")

In [129]: df["grade"]
Out[129]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

将类别重命名为更有意义的名称(分配到 Series.cat.categories就位!)。

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]

重新排序类别并同时添加缺少的类别(默认情况下返回新方法)。Series .catSeries

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
.....: "good", "very good"])
.....: In [132]: df["grade"]
Out[132]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

排序是按类别中的每个顺序排序,而不是词汇顺序。

In [133]: df.sort_values(by="grade")
Out[133]:
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good

按分类列分组还显示空类别。

In [134]: df.groupby("grade").size()
Out[134]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64

绘图

请参阅绘图文档。

In [135]: ts = pd.Series(np.random.randn(1000),
.....: index=pd.date_range('1/1/2000', periods=1000))
.....: In [136]: ts = ts.cumsum() In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7a2fc08240>

在DataFrame上,该plot()方法可以方便地使用标签绘制所有列:

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....: In [139]: df = df.cumsum() In [140]: plt.figure()
Out[140]: <Figure size 640x480 with 0 Axes> In [141]: df.plot()
Out[141]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7a2bf762b0> In [142]: plt.legend(loc='best')
Out[142]: <matplotlib.legend.Legend at 0x7f7a2beac748>

获取数据进/出

CSV

写入csv文件。

In [143]: df.to_csv('foo.csv')

从csv文件中读取。

In [144]: pd.read_csv('foo.csv')
Out[144]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

HDF5

读写HDFStores

写入HDF5商店。

In [145]: df.to_hdf('foo.h5', 'df')

从HDF5商店阅读。

In [146]: pd.read_hdf('foo.h5', 'df')
Out[146]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 0.449933 -0.741620 -1.962409
2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
... ... ... ... ...
2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]

Excel中

读写MS Excel

写入excel文件。

In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

从excel文件中读取。

In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[148]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
.. ... ... ... ... ...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

陷阱

如果您尝试执行操作,您可能会看到如下异常:

>>> if pd.Series([False, True, False]):
... print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

有关说明和操作,请参阅比较

陷阱也是如此。

pandas_1的更多相关文章

  1. pandas基础整理

    用jupyter写好,直接放到GitHub上面了→_→ 博客链接:https://douzujun.github.io/page/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%9 ...

随机推荐

  1. HTML5 图片宽高自适应,居中裁剪不失真

    一,使用 JS,先上效果图,右图为定死宽高的效果,左图为处理之后的 1, 主要思路是,在图片 onload 后,将图片的宽高比和 div 容器的宽高比进行比较, 2, 从而确定拉伸或者压缩之后是宽还是 ...

  2. python_04 基本数据类型、数字、字符串、列表、元组、字典

    基本数据类型 所有的方法(函数)都带括号,且括号内没带等号的参数需传给它一个值,带等号的参数相当于有默认值 1.数字 int 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1 ...

  3. jquery初级接触-----链式操作

    设置一个初级菜单,点击显示本级菜单下的项目,被点击的同级其它菜单收起 html 代码: <!DOCTYPE html> <html lang="en"> & ...

  4. Raft 为什么是更易理解的分布式一致性算法(转)

    一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜 ...

  5. 1.ECS(CentOS7)主机名修改命令

    命令:hostnamectl 使用--help参数查看hostnamectl里面每个参数对应的含义: [root@localhost ~]# hostnamectl --help Query or c ...

  6. 浅谈MySQL事务及隔离级别

    目录 1.什么是事务 2.事务的ACID属性 2-1.原子性(Atomicity) 2-2.一致性(Consistency) 2-3.隔离性(Isolation) 2-4.持久性(Durability ...

  7. python实现根据指定字符截取对应的行的内容

    工作中遇到的,在一个.c文件中有很多函数,这个.c是自动生成的,需要将所有的函数通过extern放到.h中,每个函数都是UINT32 O_开头,通过正则表达式进行字符匹配以及通过linecache来截 ...

  8. Ajax与select标签的组合运用

    ---------------------------------------------------------------------------------------------------- ...

  9. 最邻近算法(KNN)识别数字验证码

    应用场景   对于简单的数字型验证码的自动识别.前期已经完成的工作是通过切割将验证码图片切割成一个一个的单个数字的图片,并按照对应的数字表征类别进行分类(即哪些图片表示数字7,哪些表示8),将各种数字 ...

  10. Asp.Net WebApi 学习记录(一)

    刚创建的 Asp.Net Web Api 项目,在进行简单的测试时发现返回的 JSON 数据很丑陋.与平时我们使用的 JSON.NET 序列化出来的字符串不一样.通过下面的设置就可以了: // 清除所 ...