leecode 978. Longest Turbulent Subarray(最长连续波动序列,DP or 滚动数组)
传送门:点我
978. Longest Turbulent Subarray
A subarray A[i], A[i+1], ..., A[j]
of A
is said to be turbulent if and only if:
- For
i <= k < j
,A[k] > A[k+1]
whenk
is odd, andA[k] < A[k+1]
whenk
is even; - OR, for
i <= k < j
,A[k] > A[k+1]
whenk
is even, andA[k] < A[k+1]
whenk
is odd.
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
Return the length of a maximum size turbulent subarray of A.
Example 1:
Input: [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
Example 2:
Input: [4,8,12,16]
Output: 2
Example 3:
Input: [100]
Output: 1
Note:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
题意:求最长的连续波动子序列,注意是连续。
思路:DP滚动一下就行了。
class Solution {
public:
int maxTurbulenceSize(vector<int>& A) {
int ans = ;
int dp[][];
dp[][] = dp[][] = ;
for(int i = ; i < A.size() ; i++){
if(A[i] > A[i-]){
dp[i][] = dp[i-][] + ;
dp[i][] = ; }
else if(A[i] < A[i-]){
dp[i][] = dp[i-][] + ;
dp[i][] = ;
}
else{
dp[i][] = ;
dp[i][] = ;
}
ans = max(ans,max(dp[i][],dp[i][]));
}
return ans;
}
};
那么,换个思路,如果求的是最长的波动序列呢(可不连续)?
改下DP就行了,看下面代码:
if(a[i]>a[i-]){
dp[i][]=max(dp[i-][],dp[i-][]+);
dp[i][]=dp[i-][];
}
else if(a[i]<a[i-]){
dp[i][]=max(dp[i-][],dp[i-][]+);
dp[i][]=dp[i-][];
}
else if(a[i]==a[i-]){
dp[i][]=dp[i-][];
dp[i][]=dp[i-][];
}
return max(dp[n][0],dp[n][1]);
不是很难理解,递推下来不满足的不是等于1,而是等于上个状态取到的最长的。
以上。
leecode 978. Longest Turbulent Subarray(最长连续波动序列,DP or 滚动数组)的更多相关文章
- 【LeetCode】978. Longest Turbulent Subarray 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 虫取法 日期 题目地址:https://leetco ...
- LeetCode 978. Longest Turbulent Subarray
原题链接在这里:https://leetcode.com/problems/longest-turbulent-subarray/ 题目: A subarray A[i], A[i+1], ..., ...
- 978. Longest Turbulent Subarray
A subarray A[i], A[i+1], ..., A[j] of A is said to be turbulent if and only if: For i <= k < j ...
- [Swift]LeetCode674. 最长连续递增序列 | Longest Continuous Increasing Subsequence
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...
- LeetCode 674. 最长连续递增序列(Longest Continuous Increasing Subsequence) 18
674. 最长连续递增序列 674. Longest Continuous Increasing Subsequence 题目描述 给定一个未经排序的整型数组,找到最长且连续的递增序列. Given ...
- C#LeetCode刷题之#674-最长连续递增序列( Longest Continuous Increasing Subsequence)
问题 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/3734 访问. 给定一个未经排序的整数数组,找到最长且连续的的递增 ...
- LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
随机推荐
- js判断用户是客户端还是移动端
js判断用户是客户端还是移动端 Javascript 判断客户端是否为 PC 还是手持设备,有时候项目中需要用到,很方便的源生检测,方法一共有两种 1.第一种: function IsPC() { ...
- react-native 集成react-native-image-crop-picker,使用相册相机功能
先是安装 和链接 npm i react-native-image-crop-picker --save react-native link react-native-image-crop-picke ...
- 行为模式--代理Proxy模式(Java)
代理(AOP切面的雏形): 题记:顾名思义就是将某件事,某个东西的使用权进行为让授权转移.代理相当于中介(不同于中介者模式),在原本操作的类之间添加了一个桥梁.但代理不能去修改原有目标.比如:一个人要 ...
- APP-5-百度电子围栏
1.代码部分 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <me ...
- oracle第二天笔记
多表查询 /* 多表查询: 笛卡尔积: 实际上是两张表的乘积,但是在实际开发中没有太大意义 格式: select * from 表1,表2 */ select * from emp; select * ...
- C++中 int i 与 int &i 注意事项
来源:http://blog.csdn.net/qianchenglenger/article/details/16949689 1.int i 传值,int & i 传引用 int i不会回 ...
- 高并发架构技术|缓存失效、缓存穿透问题 PHP 代码解决
问题描述 缓存失效: 引起这个原因的主要因素是高并发下,我们一般设定一个缓存的过期时间时,可能有一些会设置5分钟啊,10分钟这些:并发很高时可能会出在某一个时间同时生成了很多的缓存,并且过期时间在同一 ...
- 关于HashMap多线程下环形链表的总结
目录 1. 概述 2. 敲黑板的点 3. 为什么会出现循环链表的情况呢?(jdk1.7) 4. jdk1.8中改进了resize方法 5. HashMap的线程安全问题 6. 总结 1. 概述 本文主 ...
- Hibernate学习笔记2.1(Hibernate基础配置)
Hibernate基础配置 1.<property name="hbm2ddl.auto">update</property> 在SessionFactor ...
- 在windows上通过ssh远程链接linux服务器[转]
本文分别转自 [http://jingyan.baidu.com/article/6d704a130de40e28db51cab5.html] [http://www.cnblogs.com/mliu ...