一、斜率优化DP与决策单调性

这里浅显(并且不严谨)地说明一下标题中的两个名词:

斜率优化DP:状态转移方程形如f[i]=min/max{f[k]+(x[i]-x[k])^y}的一类DP问题;

决策单调性:若对于状态i,有决策t<k,且k优于t,则对于任意状态v>i,存在决策k优于t。

对以上两条说明的不严谨与模糊之处,下文将结合题目给出(依旧不严谨且模糊的)一定程度上的解释。

二、题目

Description

Pine开始了从S地到T地的征途。
从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。
Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助Pine求出最小方差是多少。
设方差是v,可以证明,v×m^2是一个整数。为了避免精度误差,输出结果时输出v×m^2。

Input

第一行两个数 n、m。
第二行 n 个数,表示 n 段路的长度

Output

一个数,最小方差乘以 m^2 后的值

Sample Input

5 2
1 2 5 8 6

Sample Output

36

HINT

1≤n≤3000,保证从 S 到 T 的总路程不超过 30000

附上原题链接→_→Problem 4518. -- [Sdoi2016]征途

三、题目分析

为方便书写,作出如下约定:

a[i]:题目给出的第i段路程长;

sum[i]:路程长的前缀和;

x[i]:第i天走过的路程总和。

根据题意,每天走过的路程长度的方差表示为:

整理得:

显然,由于上式中只有x[i]为变量,问题自然转化成了求∑x2[i]的最小值。

设计状态转移方程如下:

其中,f[i][j]表示前j天走过前i段路程,每天路程平方和的最小值。

观察到状态转移方程的形式基本符合斜率优化DP的形式,于是固定j,并:

令t<k:

当t优于k:

整理得:

同理,当k优于t:

由于s[i]单调递增,故若在状态i下有k优于t,则对于任意v>i,存在k优于t。

这就意味着,如果我们在某个状态时发现决策k优于t,我们便再也不需要访问决策t了。这就利用决策单调性,达到了降低时间复杂度的效果。

此外,还可以发现,在某个状态下的有效决策形成了一个下凸壳。粗略证明如下:

设坐标系中存在点A、B、C,其横坐标单调递增,其对应决策简称为决策A、B、C

当B的纵坐标大于A、C的纵坐标(形成了一个上凸壳):

  1. 2s[i]<kBC:决策A优于决策B,决策B优于决策C,故决策A最优;
  2. kBC<2s[i]<kAB:决策A优于决策B,决策C优于决策B,故决策A或C最优;
  3. 2s[i]>kAB:决策B优于决策A,决策C优于决策B,故决策C最优。

以上,形成上凸壳时,决策B不可能成为最优决策,故删去点B,上凸壳性质被破坏;

同理,当B的纵坐标小于A、C的纵坐标(形成了一个下凸壳):

  1. 2s[i]<kAB:决策A优于决策B,决策B优于决策C,故决策A最优;
  2. kAB<2s[i]<kBC:决策B优于决策A,决策B优于决策C,故决策B最优;
  3. 2s[i]>kBC:决策B优于决策A,决策C优于决策B,故决策C最优。

故形成下凸壳时,所有决策均有可能成为最优决策。

这样,我们用一个双端队列就能维护可能成为最优决策的的决策,始终保证队首元素最优,队列满足下凸壳性质。

四、代码实现

其实f数组不需要开二维,因为我们每次只用到了f[i][j]和f[i][j-1],所以可以再压去一维。但为方便理解,博主仍使用二维f数组。

 #include<cstdio>
const int MAXN=3e3+;
int n,m;
int s[MAXN];
int q[MAXN],l,r;
long long f[MAXN][MAXN];
double count_y(int k,int j){return f[k][j-]+s[k]*s[k];}
double count(int t,int k,int j){return (count_y(t,j)-count_y(k,j))/(s[t]-s[k]);}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)
{
int x;
scanf("%d",&x);
s[i]=s[i-]+x;
}
for(int i=;i<=n;++i)f[i][]=s[i]*s[i];
for(int j=;j<=m;++j)
{
l=,r=;
for(int i=;i<=n;++i)
{
while(l<r&&count(q[l],q[l+],j)<*s[i])++l;
int temp=q[l];
f[i][j]=f[temp][j-]+(s[i]-s[temp])*(s[i]-s[temp]);
while(l<r&&count(q[r],i,j)<count(q[r-],q[r],j))--r;
q[++r]=i;
}
}
printf("%lld\n",f[n][m]*m-(long long)s[n]*s[n]);
return ;
}

bzoj4518-征途

弱弱地说一句,本蒟蒻码字也不容易,转载请注明出处http://www.cnblogs.com/Maki-Nishikino/p/6523852.html

【斜优DP】bzoj4518-Sdoi2016征途的更多相关文章

  1. BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *

    BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...

  2. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  3. BZOJ4518: [Sdoi2016]征途(dp+斜率优化)

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1875  Solved: 1045[Submit][Status][Discuss] Descript ...

  4. bzoj4518: [Sdoi2016]征途--斜率DP

    题目大意:把一个数列分成m段,计算每段的和sum,求所有的sum的方差,使其最小. 由方差*m可以化简得ans=m*sigma(ki^2)-sum[n]^2 很容易得出f[i][j]=min{f[i- ...

  5. 2018.09.08 bzoj4518: [Sdoi2016]征途(斜率优化dp)

    传送门 把式子展开后发现就是要求: m∗(∑i=1msum′[i])−sum[n]2" role="presentation" style="position: ...

  6. bzoj4518: [Sdoi2016]征途(DP+决策单调性分治优化)

    题目要求... 化简得... 显然m和sum^2是已知的,那么只要让sigma(si^2)最小,那就变成了求最小平方和的最小值,经典的决策单调性,用分治优化即可. 斜率优化忘得差不多就不写了 #inc ...

  7. [bzoj4518][Sdoi2016]征途-斜率优化

    Brief Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须 ...

  8. BZOJ4518: [Sdoi2016]征途

    Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...

  9. [luogu4072][bzoj4518][SDOI2016]征途【动态规划+斜率优化】

    题目分析 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

随机推荐

  1. Spark记录-实例和运行在Yarn

    #运行实例 #./bin/run-example SparkPi 10   #./bin/spark-shell --master local[2] #./bin/pyspark --master l ...

  2. jQuery1.11源码分析(2)-----Sizzle源码中的正则表达式[原创]

    看完了上篇,对Sizzle有了一个大致的了解,我们接下来就可以正式开始啃Sizzle的源码了.上来就讲matcher难度太大,先来点开胃菜,讲讲Sizzle中的各个正则表达式的作用吧(本来还想讲初始化 ...

  3. MFS - MooseFS 文件系统

    MFSMooseFS 文件系统 可以实现RAID 功能:节约成本 实现在线扩展:是一种半分布式文件系统. 一.MFS文件系统的组成 1.mfsmaster 元数据服务器. 在整个体系中负责管理管理文件 ...

  4. HDU 2054 又见GCD

    又见GCD Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. 使用 jquery-autocomplete插件 完成文本框输入自动填充联想效果 解决兼容IE输入中文问题

    项目中有时会用到ajax自动补全查询,就像Google的搜索框中那样,输入汉字或者字母的首个字母,则包含这个汉字或者字母的相关条目会显示出来供用户选择,该插件就是实现这样的功能的.autocomple ...

  6. Javascript - Vue - 过滤器

    过滤器 输出的数据由vue对象提供,但它的数据可能需要做进一步的处理才适合展示给用户看,为此,可以在静态的Vue上定义一个过滤器对实例vue对象的data数据进行过滤处理. //调用过滤器//msg是 ...

  7. 关于Hadoop未授权访问可导致数据泄露通知

    尊敬的腾讯云客户: 您好!近日,外部媒体报道全球Hadoop服务器因配置不安全导致海量数据泄露,涉及使用Hadoop分布式文件系统(HDFS)的近4500台服务器,数据量高达5120 TB (5.12 ...

  8. Google Protocol Buffer的安装与.proto文件的定义(转)

    转自(https://www.cnblogs.com/yinheyi/p/6080244.html) 什么是protocol Buffer呢? Google Protocol Buffer( 简称 P ...

  9. react-router 4 路由的嵌套

    1.在component组件内部需要嵌套的位置直接嵌套Route标签 这个方法会使得路由标签比较分散,子组件我们必须直接将Route标签写入到父组件之中,而且路由必须包含根路径. // Dashboa ...

  10. 使用Python自己实现简单的数据可视化

    只使用Python的random库,将已有数据生成HTML格式的标签云.思路就是根据同一单词出现的次数多少,生成不同大小不同颜色单词的数据的视图. 比如以下格式的多条数据: 1 Gaming 1 Sk ...