HDU 4709 3-idiots FFT 多项式
http://acm.hdu.edu.cn/showproblem.php?pid=4609
给一堆边,求这一堆边随便挑三个能组成三角形的概率。
裸fft,被垃圾题解坑了还以为很难。
最长的边的长度小于其余两边之和是组成三角形的充要条件,fft搞搞就行了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<complex>
using namespace std;
#define LL long long
const int maxn=;
double Pi;
typedef complex< double >cd;
cd b[maxn]={};
LL a[maxn]={},cnt[maxn]={};
int bel[maxn]={},s,bt;
void getit(){for(int i=;i<s;++i)bel[i]=(bel[i>>]>>)|((i&)<<(bt-));}
void fft(cd *c,int n,int dft){
for(int i=;i<n;++i)if(bel[i]>i)swap(c[i],c[bel[i]]);
for(int step=;step<n;step<<=){
cd w=cd(cos(Pi/(double)step),sin(Pi/(double)step)*(double)dft);
for(int j=;j<n;j+=(step<<)){
cd z=cd(1.0,);
for(int i=j;i<j+step;++i){
cd x=c[i],y=c[i+step]*z;
c[i]=x+y;c[i+step]=x-y;
z=z*w;
}
}
}
if(dft==-)for(int i=;i<n;++i)c[i]/=n;
}
int main(){
Pi=acos(-1.0);
int T;scanf("%d",&T);
while(T-->){
int n;scanf("%d",&n);
memset(cnt,,sizeof(cnt));
for(int i=;i<n;++i){scanf("%d",&a[i]);cnt[a[i]]+=;} sort(a,a+n); int siz=a[n-]+;
for(int i=;i<siz;++i)b[i]=cd(cnt[i],);
for(int i=siz;i<s;++i)b[i]=cd(,); siz*=; bt=; s=; for(;s<siz;++bt)s<<=; getit();
fft(b,s,);
for(int i=;i<s;++i)b[i]=b[i]*b[i];
fft(b,s,-);
for(int i=;i<=s;++i)cnt[i]=(LL)(b[i].real()+0.5);
for(int i=;i<s;++i)b[i]=cd(,); s=a[n-]*;
for(int i=;i<n;++i)--cnt[a[i]*];
for(int i=;i<=s;++i)cnt[i]/=;
for(int i=;i<=s;++i)cnt[i]+=cnt[i-]; LL ans=;
for(int i=;i<n;++i){
ans+=cnt[s]-cnt[a[i]];
ans-=(LL)(n--i)*i;
ans-=n-;
ans-=(LL)(n--i)*(n-i-)/;
}
LL sum=(LL)n*(n-)*(n-)/;
printf("%.7f\n",(double)(ans)/(double)(sum));
}
return ;
}
HDU 4709 3-idiots FFT 多项式的更多相关文章
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- bzoj 3513: [MUTC2013]idiots FFT
bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...
- hdu 4709:Herding(叉积求三角形面积+枚举)
Herding Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- 学习数论 HDU 4709
经过杭师大校赛的打击,明白了数学知识的重要性 开始学习数论,开始找题练手 Herding HDU - 4709 Little John is herding his father's cattles. ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- HDU 1402 A * B Problem Plus 快速傅里叶变换 FFT 多项式
http://acm.hdu.edu.cn/showproblem.php?pid=1402 快速傅里叶变换优化的高精度乘法. https://blog.csdn.net/ggn_2015/artic ...
- hdu 5142 NPY and FFT
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5142 NPY and FFT Description A boy named NPY is learn ...
- HDU 4609 3-idiots(FFT)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给出n个正整数(数组A).每次随机选出三个数.问这三个数能组成三角形的概率为多大? 思路: ...
- hdu - 4709 - Herding
题意:给出N个点的坐标,从中取些点来组成一个多边形,求这个多边形的最小面积,组不成多边形的输出"Impossible"(测试组数 T <= 25, 1 <= N < ...
随机推荐
- 初识python面向对象编程
初识python面向对象编程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.面向过程的程序设计思想 #!/usr/bin/env python #_*_coding:utf-8 ...
- ubuntu 发送邮件
1. 使用下面命令安装 sudo apt-get install heirloom-mailx 2. 编辑配置信息 vim /etc/nail.rc //此时如果打印没有权限则使用sudo命令,并且在 ...
- git push --set-upstream
我在本地建了一个分支wangxiao,开发完之后,提交代码 git add .git commit -m '注释'git push 出现下面的问题,这个意思是:当前分支没有与远程分支关联. 因此导致了 ...
- 20155302 2016-2017-2《Java程序设计》第五周学习总结
20155302 2016-2017-2 <Java程序设计>第5周学习总结 教材学习内容总结 异常类从哪里来?有两个来源,一是Java语言本身定义的一些基本异常类型,二是用户通过继承Ex ...
- Android利用LocalSocket实现Java端进程与C端进程之间的IPC
Android是建立在Linux之上的OS,在涉及到安全.网络协议.文件加密等功能时,往往需要通过C语言调用底层API来实现,而如何发出指令让C端执行我们想要的功能,并且在执行之后有返回结果呢,这就需 ...
- 第12月第1天 MASConstraintMaker crash
1. crash [valueLabel mas_makeConstraints:^(PAKitMASConstraintMaker *make) { make.left.equalTo(finish ...
- Java并发——线程同步Volatile与Synchronized详解
0. 前言 转载请注明出处:http://blog.csdn.net/seu_calvin/article/details/52370068 面试时很可能遇到这样一个问题:使用volatile修饰in ...
- Linux环境下段错误的产生原因及调试方法小结【转】
转自:http://www.cnblogs.com/panfeng412/archive/2011/11/06/2237857.html 最近在Linux环境下做C语言项目,由于是在一个原有项目基础之 ...
- WPF为stackpanel设置滚动条
最新遇到ItemControl控件增加滚动条功能,找半天还是在StackPanel模板外添加的. <ScrollViewer x:Name="scrolls" Vertica ...
- nginx:在centos中自启动
参考网址:http://www.jb51.net/article/120545.htm # vi /etc/init.d/nginx #!/bin/sh # Name:nginx4comex # ng ...