转载:https://blog.csdn.net/u010665216/article/details/78528261

首先,我们直接构造赛题结果:真实数据与预测数据:

predictions = [0.9, 0.3, 0.8, 0.75, 0.65, 0.6, 0.78, 0.7, 0.05, 0.4, 0.4, 0.05, 0.5, 0.1, 0.1]
actual = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

我们将预测值从小到大排列:

data = zip(actual, predictions)
sorted_data = sorted(data, key=lambda d: d[1])
sorted_actual = [d[0] for d in sorted_data]
print('Sorted Actual Values', sorted_actual)

我们对排序后的真实值累计求和:

cumulative_actual = np.cumsum(sorted_actual)
cumulative_index = np.arange(1, len(cumulative_actual)+1) plt.plot(cumulative_index, cumulative_actual)
plt.xlabel('Cumulative Number of Predictions')
plt.ylabel('Cumulative Actual Values')
plt.show()

我们将数据Normalization到0,1之间,并画出45度线:

cumulative_actual_shares = cumulative_actual / sum(actual)
cumulative_index_shares = cumulative_index / len(predictions) #Add (0, 0) to the plot
x_values = [0] + list(cumulative_index_shares)
y_values = [0] + list(cumulative_actual_shares) #Display the 45° line stacked on top of the y values
diagonal = [x - y for (x, y) in zip(x_values, y_values)] plt.stackplot(x_values, y_values, diagonal)
plt.xlabel('Cumulative Share of Predictions')
plt.ylabel('Cumulative Share of Actual Values')
plt.show()

计算橙色区域面积:

fy = scipy.interpolate.interp1d(x_values, y_values)
blue_area, _ = scipy.integrate.quad(fy, 0, 1, points=x_values)
orange_area = 0.5 - blue_area
print('Orange Area: %.3f' % orange_area)

最大可能的基尼系数:

前面我们是按照预测值对真实值排序,得到一个基尼系数;现在我们按照真实值给真实值排序,得到最大可能的基尼系数:

cumulative_actual_shares_perfect = np.cumsum(sorted(actual)) / sum(actual)
y_values_perfect = [0] + list(cumulative_actual_shares_perfect) #Display the 45° line stacked on top of the y values
diagonal = [x - y for (x, y) in zip(x_values, y_values_perfect)] plt.stackplot(x_values, y_values_perfect, diagonal)
plt.xlabel('Cumulative Share of Predictions')
plt.ylabel('Cumulative Share of Actual Values')
plt.show() # Integrate the the curve function
fy = scipy.interpolate.interp1d(x_values, y_values_perfect)
blue_area, _ = scipy.integrate.quad(fy, 0, 1, points=x_values)
orange_area = 0.5 - blue_area
print('Orange Area: %.3f' % orange_area)

数据挖掘中的Scoring Metric的实现:

def gini(actual, pred):
assert (len(actual) == len(pred))
all = np.asarray(np.c_[actual, pred, np.arange(len(actual))], dtype=np.float)
all = all[np.lexsort((all[:, 2], -1 * all[:, 1]))]
totalLosses = all[:, 0].sum()
giniSum = all[:, 0].cumsum().sum() / totalLosses giniSum -= (len(actual) + 1) / 2.
return giniSum / len(actual) def gini_normalized(actual, pred):
return gini(actual, pred) / gini(actual, actual) gini_predictions = gini(actual, predictions)
gini_max = gini(actual, actual)
ngini= gini_normalized(actual, predictions)
print('Gini: %.3f, Max. Gini: %.3f, Normalized Gini: %.3f' % (gini_predictions, gini_max, ngini))

Gini系数的原理的更多相关文章

  1. Gini 系数与熵的关系

    首先来看二者的基本定义: ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪H(X)=−∑k=1KpklnpkGini(X)=∑k=1Kpk(1−pk) 将 f(x)=−lnx 在 x=1 处进行一阶泰勒展开(忽略高阶无穷小 ...

  2. CART(分类回归树)原理和实现

    前面我们了解了决策树和adaboost的决策树墩的原理和实现,在adaboost我们看到,用简单的决策树墩的效果也很不错,但是对于更多特征的样本来说,可能需要很多数量的决策树墩 或许我们可以考虑使用更 ...

  3. sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  4. 3.决策树ID3算法原理

    1.决策树的作用 主要用于解决分类问题的一种算法 2.建立决策树的3中常用算法 1).ID3--->信息增益 2).c4.5--> 信息增益率 4).CART Gini系数 3.提出问题: ...

  5. cart中回归树的原理和实现

    前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评 ...

  6. 拆系数FFT及其部分优化

    模拟考某题一开始由于校内OJ太慢直接拆系数FFT跑不过 后来被神仙婊了一顿之后发现复杂度写炸了改了改随便过 模版题:任意模数NTT 三模数NTT 常数巨大,跑的极慢 拆系数FFT 原理是对于两个多项式 ...

  7. 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  8. 大白话5分钟带你走进人工智能-第31节集成学习之最通俗理解GBDT原理和过程

    目录 1.前述 2.向量空间的梯度下降: 3.函数空间的梯度下降: 4.梯度下降的流程: 5.在向量空间的梯度下降和在函数空间的梯度下降有什么区别呢? 6.我们看下GBDT的流程图解: 7.我们看一个 ...

  9. 用cart(分类回归树)作为弱分类器实现adaboost

    在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现, 上两篇我们学习了cart(决策分 ...

随机推荐

  1. mysql之mysqldump——备份与还原

    导出数据库里的某一张表 [root@localhost ~]# mysqldump -uroot -p test bptest>fi.mysql #导出test数据库中的bptest表 Ente ...

  2. ipfs webui 管理界面

    ipfs 内置了一个webui 默认的端口是5001 访问地址 http://ip:5001/webui 环境准备 docker-compose 文件   version: "3" ...

  3. Unity 官方文档学习

    Manual Texture Components:https://docs.unity3d.com/Manual/comp-Textures.html Profiler:https://docs.u ...

  4. 对象的get set方法

  5. Day 38 HTML

    HTML文档结构 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset=&qu ...

  6. Hanlp分词之CRF中文词法分析详解

    这是另一套基于CRF的词法分析系统,类似感知机词法分析器,提供了完善的训练与分析接口. CRF的效果比感知机稍好一些,然而训练速度较慢,也不支持在线学习. 默认模型训练自OpenCorpus/pku9 ...

  7. error: C++ preprocessor "/lib/cpp" fails sanity check错误解决方法

    error: C++ preprocessor "/lib/cpp" fails sanity check 问题的解决 问题的根源是缺少必要的C++库.如果是CentOS系统,运行 ...

  8. NDK学习笔记(三):DynamicKnobs的机制

    最近的NDK开发涉及到了动态input及动态knobs的问题. 开发需求如下:建立一个节点,该节点能获取每一个input上游的inputframerange信息. 具体下来就是:需要Node的inpu ...

  9. Requests+正则表达式爬取猫眼电影

    目标 提取出猫眼电影TOP100的电影名称.时间.评分.图片等信息,提取站点的URL为http://maoyan.com/board/4,提取的结果以文本的形式保存下来. 准备工作 请安装好reque ...

  10. Azure SQL Database (22) Azure SQL Database支持中文值

    <Windows Azure Platform 系列文章目录> 在笔者之前的文章里,已经介绍了如何使Azure SQL Database支持中文: SQL Azure(七) 在SQL Az ...