简介

VGG, resnet和inception是3种典型的卷积神经网络结构。

  • VGG采用了3*3的卷积核,逐步扩大通道数量
  • resnet中,每两层卷积增加一个旁路
  • inception实现了卷积核的并联,然后把各自通道拼接到一起

简单起见,直接使用了[1]的代码来测试 resnet,然后用[2],[4]的代码替换[1]中的model,改了改通道,测 VGG 和 inception。

GPU是gtx1050,主板开始是 x79,后来坏了,换成 x470,GPU占比提高很多。

CPU占比始终100%

实验结果

超参数:epochs=80,lr=0.001,optim=Adam

数据集:cifar10

_ 参数个数(k) 训练时间(m) 精度(%) GPU内存(M) GPU占比(%)
resnet 195 22 88 607 99
vgg_bn 207 17 84 535 60
inception 107 19 80 613 98

结论:条条道路通罗马。

附加实验

因为方便,注释掉 Batch Normalization,以及 Data Augmentation 又试了两次。

_ 参数个数(k) 训练时间(m) 精度(%) GPU内存(M) GPU占比(%)
resnet 195 22 88 607 99
resnet-BN 195 19 86 553 99
resnet-DA 195 22 64 607 99

结论:Data Augmentation很重要

代码改动

class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 16
self.conv = conv3x3(3, 16)
self.bn = nn.BatchNorm2d(16)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 16, layers[0])
self.layer2 = self.make_layer(block, 32, layers[1], 2)
self.layer3 = self.make_layer(block, 64, layers[2], 2)
self.avg_pool = nn.AvgPool2d(8)
self.fc = nn.Linear(64, num_classes) print('# generator parameters:', sum(param.numel() for param in model.parameters()))
class VGG(nn.Module):

    def __init__(self, features, num_classes=10, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((3, 3))
self.classifier = nn.Sequential(
nn.Linear(9 * 8 * 8, 64),
nn.ReLU(True),
#nn.Dropout(),
nn.Linear(64, 64),
nn.ReLU(True),
#nn.Dropout(),
nn.Linear(64, num_classes),
) def vgg_bn(**kwargs): cfg = [16, 16, 'M', 32, 32, 'M', 32, 32, 'M', 64, 64, 'M', 64, 64, 'M']
model = VGG(make_layers(cfg, batch_norm=True), **kwargs)
class Inception_v1(nn.Module):
def __init__(self, num_classes=10):
super(Inception_v1, self).__init__() #conv2d0
self.conv1 = conv3x3(3, 6)
self.max_pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.lrn1 = nn.BatchNorm2d(6) self.inception_3a = Inception_base(1, 6, [[16], [16,32], [8, 16], [3, 16]]) #3a
self.inception_3b = Inception_base(1, 80, [[40], [32,48], [12, 16], [3, 16]]) #3b
self.max_pool_inc3= nn.MaxPool2d(kernel_size=3, stride=2, padding=0) self.inception_5a = Inception_base(1, 120, [[40], [32,48], [12, 16], [3, 16]]) #5a
self.inception_5b = Inception_base(1, 120, [[40], [32,48], [12, 16], [3, 16]]) #5b
self.avg_pool5 = nn.AvgPool2d(kernel_size=3, stride=2, padding=0) self.dropout_layer = nn.Dropout(0.4)
self.fc = nn.Linear(120*9, num_classes)

引用

[1] https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate/deep_residual_network/main.py

[2] https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

[3] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

[4] https://github.com/antspy/inception_v1.pytorch/blob/master/inception_v1.py

比较 VGG, resnet和inception的图像分类效果的更多相关文章

  1. NASNet学习笔记——   核心一:延续NAS论文的核心机制使得能够自动产生网络结构;    核心二:采用resnet和Inception重复使用block结构思想;    核心三:利用迁移学习将生成的网络迁移到大数据集上提出一个new search space。

    from:https://blog.csdn.net/xjz18298268521/article/details/79079008 NASNet总结 论文:<Learning Transfer ...

  2. 学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)

    视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自 ...

  3. Keras入门(五)搭建ResNet对CIFAR-10进行图像分类

      本文将会介绍如何利用Keras来搭建著名的ResNet神经网络模型,在CIFAR-10数据集进行图像分类. 数据集介绍   CIFAR-10数据集是已经标注好的图像数据集,由Alex Krizhe ...

  4. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  5. 图像分类丨Inception家族进化史「GoogleNet、Inception、Xception」

    引言 Google提出的Inception系列是分类任务中的代表性工作,不同于VGG简单地堆叠卷积层,Inception重视网络的拓扑结构.本文关注Inception系列方法的演变,并加入了Xcept ...

  6. 1、VGG16 2、VGG19 3、ResNet50 4、Inception V3 5、Xception介绍——迁移学习

    ResNet, AlexNet, VGG, Inception: 理解各种各样的CNN架构 本文翻译自ResNet, AlexNet, VGG, Inception: Understanding va ...

  7. 深度学习笔记(十一)网络 Inception, Xception, MobileNet, ShuffeNet, ResNeXt, SqueezeNet, EfficientNet, MixConv

    1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet, ...

  8. PyTorch ResNet 使用与源码解析

    本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py 这篇文章首先会简 ...

  9. 【深度学习】keras + tensorflow 实现猫和狗图像分类

    本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resn ...

随机推荐

  1. 【工具推荐】截图工具 Snipaste

    0. 说明 [官网介绍] Snipaste 是一个简单但强大的截图工具,也可以让你将截图贴回到屏幕上!下载并打开 Snipaste,按下 F1 来开始截图,再按 F3,截图就在桌面置顶显示了.就这么简 ...

  2. gnome美化

    调整工具更新可以移动窗口控件gnome-tweak-tool # dnf install gnome-tweak-tool 命令行启动,并且要在普通用户下启动 $ gnome-tweak-tool 在 ...

  3. 探索C#字符串

    一.前言 刚接触C#时,书上说string是一种特殊的引用类型,因此string类型变量在作为参数传递到另一个方法,被修改后原变量的值不会发生变化,当时看得我一脸懵逼,什么叫特殊....后来又听说字符 ...

  4. 20165318 2017-2018-2《Java程序设计》课程总结

    20165318 2017-2018-2<Java程序设计>课程总结 一.每周作业链接汇总 每周作业链接汇总 预备作业1:我期望的师生关系 预备作业2:C语言基础调查和java学习展望 预 ...

  5. rename 表

    ----执行过程 TS.TEST ---RENAME INDEX(索引) ALTER INDEX TS.IDX1_TEST RENAME TO IDX1_TEST_BAK; ALTER INDEX T ...

  6. CentOS7服务器配置网络

    Centos7最小化安装 [root@localhost ~]# vim /etc/sysconfig/network-scripts/ifcfg-enp5s0f0编辑如下:TYPE=Ethernet ...

  7. css 字体、文本、padding的样式

    一.字体的样式: 1)字体倾斜:font-style:italic 2)字体大小:font-size 一般为偶数. 3)行高:line-height   当行高为奇数的时候,是文字上面比文字下面的少一 ...

  8. MSMQ消息队列总结

    1.总体介绍: http://www.cnblogs.com/beniao/archive/2008/06/26/1229934.html 2.windows服务各项参数介绍及安装 https://w ...

  9. C++之静态的变量和静态函数

    到目前为止,我们设计的类中所有的成员变量和成员函数都是属于对象的,如我们在前面定义的book类,利用book类声明两个对象Alice和Harry,这两个对象均拥有各自的price和title成员变量, ...

  10. C++面向对象模型

    1. 基础知识 C++编译器怎样完毕面向对象理论到计算机程序的转化? 换句话:C++编译器是怎样管理类.对象.类和对象之间的关系 详细的说:详细对象调用类写的方法,那,c++编译器是怎样区分,是那个详 ...