最近在工作中,一直在调试关于MOSFET的电路。在设计过程中发现了PMOS和NMOS的差异,在此记录。

一、 MOSFET简介

  MOSFET (metal-oxide-semiconductor field-effect transistor)的中文应称为"金属氧化物半导体场效应管"。从名字中就可看出这是一种场效应管,场效应管为我们带来了逻辑电路,从而有了计算机的物理实现。所有的场效应管的原则都是通过输入控制输出,具体来讲就是通过控制元件某部分的电压,来改变元件的导电性,从而改变流过元件中的电流。我在学习场效应管的时候看过一本国外教材,教材中用了一个水龙头的图片就让我茅塞顿开。我们可以这样想,被控制的元件就是水龙头,我们的控制信号就是打开水龙头的幅度,如果我们的信号足够强,水龙头就可以打开,水就会从水龙头中流出,这里的水就是元件中流出的电流。如果水龙头打开的幅度越大,那么水流量也必然变大,对应场效应管中加大控制信号,输出电流增大。当然,我们从生活中也知道水龙头打开的幅度是有极限的,因此水流量也有一个峰值,如果你仍然增大外力旋转阀门,最终只会造成不可逆的改变,阀门坏掉,控制失灵,水龙头只不过是水流的出口罢了。这对于场效应管同样适用,它有着自己的饱和区,如果控制电压足够大后,不管你如何增大电压,流出的电流都一定,但是如果电压过大,你也将会毁掉这个元件,失去控制。所以我习惯将场效应管称为"电水龙头"。

  下面我们具体看看MOSFET的构造。首先,绝缘层(通常是二氧化硅)被覆盖在半导体(硅衬底)上,之后再在绝缘层上安置金属或多晶硅的门电极。因为二氧化硅是一种介电材料,这种构造非常像一个平行板电容器,只不过将一侧的金属板换成了半导体的硅衬底。以上描述的构造是MOS的部分,即金属-氧化物-半导体(metal-oxide-semiconductor)结构。对于半导体,我们知道它可按照掺杂类型分成P型半导体和N型半导体,前者导电载体为空穴,后者为电子。下面我们以P型半导体为例讲解。

  Ref:  https://en.wikipedia.org/wiki/MOSFET

  从上图中可以看出,MOS部分就是P衬底部分和gate(门极)间的部分。注意到Source(源极)和drain(漏极)部分掺杂和衬底相反。从半导体物理中我们知道,这会形成耗尽层(depeletion region),即这部分区域中无导电载荷存在。在初始情况下(Gate和source间无电压),耗尽层横亘与source和drain之间,相当于水龙头的阀门关上了,drain和source中的载流子无法传导,即在drain和source间无电流输出。如果我们增加gate和source间的电压$V_{GS}$,直到出现了右上图中的反转层(Inversion layer),此时drain和source连通,相当于水龙头的阀门打开了,drain和source间也将有电流$I_{DS}$流动。改变$V_{GS}$,反转层的厚度也将改变,从而改变drain和source间的电阻,达到了通过$V_{GS}$控制$I_{DS}$的效果。然而我们注意到这种情况是有条件的,仅限于$V_{DS}$不太大的情况下,如果$V_{DS}$过大,靠近drain的一侧便不可能形成反转层,就像右下图描绘的那样。你可能会认为这种情形无法导通电流了,但是drain和反转层之间的高电压会使电流继续导通,只不过在这个情形下,电流基本不受$V_{GS}$控制,类似于水龙头完全打开,电流饱和,故称为饱和区。总体上的导通情形可参考下图。

  ref: https://en.wikipedia.org/wiki/MOSFET

  对于NMOS:

  在线性区($V_{GS}>V_T$,$V_{DS}\leq V_{GS}-V_T$),漏极电流$I_D=\mu_nC_{ox}\frac{W}{L}[(V_{GS}-V_T)V_{DS}-\frac12 V_{DS}^2]$. 这里$I_D$和控制电压$V_{GS}$线性相关,故名线性区。表达式中$\mu_n$是NMOS载荷电子的迁移率,$C_{ox}$是氧化物的电容,$W$是gate极板的宽度,$L$是gate极板的长度,这里长度也是源极和漏极的间距,宽度是在另一维度的度量。

  在饱和区 ($V_{GS}>V_T$,$V_{DS}\geq V_{GS}-V_T$),$I_D=\frac12\mu_nC_{ox}\frac{W}{L}(V_{GS}-V_T)^2$.

  对于PMOS:

  阈值电压为负,导通时$V_{GS}<0$。

  类似地,在线性区($V_{SG}>|V_T|$,$V_{SD}<V_{SG}-|V_T|$),漏极电流$I_D=\mu_p C_{ox}\frac{W}{L}[(V_{SG}-|V_T|)V_{SD}-\frac12 V_{SD}^2]$. 这里$\mu_p$是PMOS的载荷空穴的迁移率。

  在饱和区($V_{SG}>|V_T|$,$V_{SD}>V_{SG}-|V_T|$),$I_D=\frac12\mu_p C_{ox}\frac{W}{L}(V_{SG}-|V_T|)^2$.

  上面的公式对应MOSFET的理想模型。针对实际模型,我们做出如下修正(以NMOS为例)。

  (1)  在$V_{GS}<V_T$时,因为氧化物中电流泄露,漏极电流$I_D$并不为0。这种泄露效应在越薄的氧化层中越明显。

  (2)在饱和区,从上面的分析我们也看到了,当$V_{DS}$增加时,反转层的长度减少了,即$L$减少了,因此漏极电流应相应增大。我们引入参数$\lambda$,修正这一效应,此时漏极电流可表示为

    $I_D=\frac12\mu C_{ox}\frac{W}{L}(1+\lambda V_{DS})(V_{GS}-V_T)^2$.

  (3)Body effect: P型半导体处彻底的电极又称为Body. 其上施加的电压会影响阈值电压$V_T$. 具体来讲,$V_T$实际上和$V_{SB}$相关,即Source和Body的电势差。

  (4)温度效应: MOSFET很多参数都与温度相关。

二、 PMOS和NMOS的差异

  一直以来我都忽视了PMOS和NMOS的差异,只在概念上明白PMOS的载荷是空穴,NMOS的载荷是电子。因此在设计电路时往往将一些元件的参数同时应用于两者,但最近在一个电路测试的过程中我发现我的电路只适用于PMOS不适用于NMOS。这让我有些不解,请教了一个大师,大师仅让我将gate处的电阻提高3倍,以此提高增益(gain)。我不理解它都没怎么看电路怎么就能得出3倍这个结论,于是再次请教。原来答案是空穴的速度是电子速度的三分之一,也就是迁移率的比例。按他的建议改进了电路,果然有效,对他真是十分佩服,也深感要理解透彻才能达到这个地步!我现在的程度只能对MOSFET介绍这么多,将来有时间希望从费米面和能带理论入手好好分析一下电子元件,从而加深认识与理解。

MOSFET简介以及PMOS和NMOS的差异的更多相关文章

  1. PMOS 与 NMOS

    PMOS: NMOS: NMOS是栅极高电平(VGS > Vt)导通,低电平断开,可用来控制与地之间的导通.PMOS是栅极低电平(VGS < Vt)导通,高电平断开,可用来控制与电源之间的 ...

  2. verilog中一些基本的门电路如pmos和nmos等

    最近在分析波形的时候,发现某个PAD模型的行为与想象的不一致,就进入stdcell里面看了下,主要是pmos和nmos相关的东西,暂列如下: 开关级基元14种 是实际的MOS关的抽象表示,分电阻型(前 ...

  3. 为什么PMOS比NMOS的沟道导通电阻大,速度慢,价格高-透彻详解

    原文地址点击这里: 在前一节,我们对PMOS与NMOS两种增强型场效应管的开关电路作了详细的介绍, 并且还提到过一种广为流传的说法:相对于NMOS管,PMOS管的沟道导通电阻更大.速度更慢.成本更高等 ...

  4. CMOS (1)–PMOS与NMOS

    1,名称来源 p,n指示的是生成的沟道类型 2,驱动逻辑0与逻辑1 一般用NMOS驱动逻辑0,用PMOS驱动逻辑1.

  5. MOSFET中的重要参数

    最近在调试MOSFET电路中,发现了更多问题,比如同样的PI反馈控制电路可以很好的控制PMOS工作,却对NMOS不能很好控制.当然你肯定会说那是因为PMOS和NMOS不同呀,这自然没有错,我在上一篇文 ...

  6. Transistor 晶体管 场效应 双极型 达林顿 CMOS PMOS BJT FET

    Transistor Tutorial Summary Transistor Tutorial Summary Bipolar Junction Transistor Tutorial We can ...

  7. MOSFET, MOS管, 开关管笔记

    MOSFET, MOS管, 开关管 MOSFET, Metal-Oxide-Semiconductor Field-Effect Transistor, 金属氧化物半导体场效晶体管 常见封装 电路符号 ...

  8. 嵌入式单片机STM32应用技术(课本)

    目录SAIU R20 1 6 第1页第1 章. 初识STM32..................................................................... ...

  9. 笔记本POWER部分的应用——(MOS/LDO/BUCK BOOST)

    一.MOSFET 简介: 金属-氧化物半导体场效应晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一 ...

随机推荐

  1. excel表格中添加单引号的方法

    今天碰到需要插入大量数据的excel表格,其中有很多文本,需要添加单引号. 方法如下: 左边是原始数据,右边是我即将添加单引号的空白区域. 第一步:在需要添加的位置输入= 第二步:输入等号之后点击需要 ...

  2. Go 在 TiDB 的实践

    https://blog.csdn.net/RA681t58CJxsgCkJ31/article/details/79215751 更多TiDB链接: https://my.oschina.net/z ...

  3. django导入自定义模块

    自定义模块cust.py位于应用aptest目录下 1.编辑settings.py from aptest import cust 2.编辑views.py from cust import pc # ...

  4. Eclipse无法自动编译生成class文件

    在Maven项目中,通常eclipse生成的class文件都会在target/classes文件夹下,但是有时候由于各种原因,classes下没有生成class文件,导致项目启动失败 . 大部分cla ...

  5. cocos2d-x2.2.3学习

    cocos2d-x2.2.3抛弃了原先的vs模板,改为python创建项目,详细什么原因我不是非常清楚啊,可能更方便些吧. 毕竟用pythone能够一下子创建很多不同平台的项目,让项目移植更方便些.可 ...

  6. centos7之Java开发环境构建

    CensOS7环境 我个人的博客环境如下: 希望这个教程可以帮助到linux新手朋友们或者其他在安装软件时遇到问题的朋友们 当然了,百度上也有很多类似这样的教程,我个人贴出来,一来为分享,二来以后自己 ...

  7. rpm -qa 查找文件

    系统环境:centos6.6 yum install 安装的文件找不到安装路径,使用whereis和find -name都无效 rpm -qa | grep -i 关键字  查找 rpm -ql fi ...

  8. Qt5中运行后台网络读取线程与主UI线程互交

    项目中有一个需求就是,因为需要请求服务端数据,因为网络的读取会阻塞,所以该过程不能放在Qt中的UI主线程当中,需要用一个后台线程来读取数据,数据准备完毕后 在通过Qt5中的信号槽机制来跨线程的传递数据 ...

  9. 如何为Windows Forms应用程序添加启动参数(Start-Up Parameters)

    很多场合下,我们需要通过命令行或者快捷方式在Windows Forms程序启动时向其传递参数. 这些参数可能是用来加载某一个文档,或者是应用程序的初始化配置文件. 特别是对那些需要高度自定义配置的大程 ...

  10. iis配置绑定二级域名的问题

    最近用destoon给客户做一个网站,涉及到站内企业网站的二级域名解析的问题,iis怎么配置绑定子目录绑定二级域名呢,查了好多资料,没有一个给出具体步骤的 基本是一些概念,不过看了这些东西基本理解了泛 ...