struct Edge{
int from, to, nex;
}edge[N<<1];
int head[N], edgenum;
void addedge(int u, int v){
Edge E = {u, v, head[u]};
edge[ edgenum ] = E;
head[u] = edgenum ++;
} inline int Max(int a,int b){return a>b?a:b;} int time;
int deep[N<<1], index[N<<1], first[N];
void DFS(int u, int dep){
deep[time] = u;
index[time] =u;
time++;
for(int i = head[u]; i !=-1; i = edge[i].nex)
{
int v = edge[i].to;
if(first[v] == 0)
{
first[v] = time;
DFS(v, dep+1);
deep[time] = u;
index[time]= u;
time++;
}
}
}
int dp[N<<1][25];//注意第二维一定要比log(n)大
void RMQ_init(int n){
for(int i = 1; i <= n; i++)
dp[i][0] = i;
for(int j = 1; (1<<j)<=n;j++)
{
int k = 1<<(j-1);
for(int i = 1; i+k<n; i++)
{
if(deep[ dp[i][j-1] ] <= deep[ dp[i+k][j-1] ])
dp[i][j] = dp[i][j-1];
else
dp[i][j] = dp[i+k][j-1];
}
}
}
int RMQ(int a,int b){
int dis = Max(a-b,b-a) +1;
int k = log(double(dis))/ log(2.0);
if(deep[dp[a][k]]<= deep[dp[b - (1<<k) +1][k]])
return dp[a][k];
else
return dp[b-(1<<k)+1][k];
}
int LCA(int u, int v){
int fu = first[u], fv = first[v];
return fu<=fv? index[ RMQ(fu,fv)] : index[ RMQ(fv,fu)];
}
void init(){
memset(head, -1, sizeof(head)); edgenum = 0;
memset(first, 0, sizeof(first));
}
void Have_Lca(int root){
first[root] = 1;
time = 1;
DFS(root, 0);
RMQ_init(time-1);
}

LCA的 RMQ解法模版的更多相关文章

  1. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  2. LCA和RMQ

    下面写提供几个学习LCA和RMQ的博客,都很通熟易懂 http://dongxicheng.org/structure/lca-rmq/ 这个应该是讲得最好的,且博主还有很多其他文章,可以读读,感觉认 ...

  3. ZOJ 3195 Design the city LCA转RMQ

    题意:给定n个点,下面n-1行 u , v ,dis 表示一条无向边和边权值,这里给了一颗无向树 下面m表示m个询问,问 u v n 三点最短距离 典型的LCA转RMQ #include<std ...

  4. lca转RMQ

    这个博客写得好 #include <stdio.h> #include <vector> #include <string.h> using namespace s ...

  5. HDU 3078 LCA转RMQ

    题意: n个点 m个询问 下面n个数字表示点权值 n-1行给定一棵树 m个询问 k u v k为0时把u点权值改为v 或者问 u-v的路径上 第k大的数 思路: LCA转RMQ求出 LCA(u,v) ...

  6. 【51NOD1766】树上的最远点对(线段树,LCA,RMQ)

    题意:n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间, 表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c< ...

  7. LCA与RMQ

    一.什么是LCA? LCA:Least Common Ancestors(最近公共祖先),对于一棵有根树T的任意两个节点u,v,求出LCA(T, u, v),即离跟最远的节点x,使得x同时是u和v的祖 ...

  8. POJ 1986(LCA and RMQ)

    题意:给定一棵树,求任意两点之间的距离. 思路:由于树的特殊性,所以任意两点之间的路径是唯一的.u到v的距离等于dis(u) + dis(v) - 2 * dis(lca(u, v)); 其中dis( ...

  9. HDU 5266 pog loves szh III (线段树+在线LCA转RMQ)

    题目地址:HDU 5266 这题用转RMQ求LCA的方法来做的很easy,仅仅须要找到l-r区间内的dfs序最大的和最小的就能够.那么用线段树或者RMQ维护一下区间最值就能够了.然后就是找dfs序最大 ...

随机推荐

  1. Luogu 2051[AHOI2009]中国象棋 - DP

    Description 在 $n * m$ 的格子上放若干个炮, 使得每个炮都不能攻击到其他炮 Solution 定义数组f[ i ][ j ][ k ] 表示到了第 i 行, 已经有2个炮的列数为 ...

  2. UI设计中颜色的前进色与后退色

    暖色调的颜色属于前进色.膨胀色可以使物体的视觉效果变大,而收缩色可以使物体的视觉效果变小.   颜色的另外一种效果.有的颜色看起来向上凸出,而有的颜色看起来向下凹陷,其中显得凸出的颜色被称为前进色,而 ...

  3. Laravel policy 的应用

    Laravel 提供更简单的方式来处理用户授权动作.类似用户认证,有 2 种主要方式来实现用户授权:gates 和策略,我这里主要讲解下策略的使用. 文档 上面有详细的说明,我这里只根据自己使用过程做 ...

  4. where_1

    (二)WHERE //where不单独使用,与match,optional match,start,with搭配 where 与match,optional match 一起用,表示约束 where ...

  5. Visual code 搭建Vue项目

    使用VS Code搭建Vue项目 1.安装 VScode 2..安装最新node.JS 2.安装cnpm镜像  淘宝镜像(node自带安装了npm,故不再安装) npm install -g cnpm ...

  6. coocsCreator杂记

    判断是否继承 cc.isChildClassOf = function (subclass, superclass) { 获取所有super classes CCClass.getInheritanc ...

  7. SQL表两列取一列唯一值的记录

    问下SQL表两列取一列唯一值的 A列         B列       C列 1001      AA      2012-01-02 1001      BB      2012-02-05 100 ...

  8. 【Redis】安装 Redis接口时异常 ,系统ruby版本过低

    场景 操作系统Linux CentOS 7.2,安装Redis接口时,使用命令:gem install redis ,用于系统ruby版本过低,报错“redis requires Ruby versi ...

  9. mysqldb mysql_config

    在安装mysqldb Python的时候会用到mysql_config,但是正常安装的MySQL环境下是没有这个文件的,这个文件在Linux下是可执行文件,所以需要到mysql官方网站上下载MySQL ...

  10. neo4j服务配置

    第一步: 首先下载neo4j的community版本的    https://neo4j.com/download-center/ 第二步-添加环境变量: NEO4J_HOME = [文件路径] Pa ...