Matrix multiplication

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1289    Accepted Submission(s): 568

Problem Description
Given two matrices A and B of size n×n, find the product of them.

bobo hates big integers. So you are only asked to find the result modulo 3.

 
Input
The input consists of several tests. For each tests:

The first line contains n (1≤n≤800). Each of the following n lines
contain n integers -- the description of the matrix A. The j-th integer
in the i-th line equals Aij. The next n lines describe the matrix B in similar format (0≤Aij,Bij≤109).

 
Output
For each tests:

Print n lines. Each of them contain n integers -- the matrix A×B in similar format.

 
Sample Input
1
0
1
2
0 1
2 3
4 5
6 7
 
Sample Output
0
0 1
2 1
 
#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
#define MAX 810
int a[MAX][MAX],b[MAX][MAX],c[MAX][MAX]; int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
scanf("%d",&a[i][j]);
a[i][j]=a[i][j]%;
}
}
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
scanf("%d",&b[i][j]);
b[i][j]=b[i][j]%;
}
} memset(c,,sizeof(c));
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
if(a[i][j]==) continue;
for(int k=;k<n;k++)
{
c[i][k]+=a[i][j]*b[j][k]; 如果这里 c[i][k]+=(a[i][j]*b[j][k])%3;就会超时
}
}
}
for(int i = ; i < n; i++)
{
for(int j = ; j < n; j++)
if(j == )
printf("%d", c[i][j]%);
else
printf(" %d", c[i][j]%);
printf("\n");
}
}
return ;
}
#include <iostream>
#include<stdio.h>
#include<vector>
///他把所有的0都忽略了,很巧妙的优化,aa[][], bb[][]里存储的是下一个不为0的位置:
#include<queue>
#include<stack>
#include<string.h>
#include<algorithm>
#include<map>
using namespace std;
#define LL long long
#define gcd(a,b) (b==0?a:gcd(b,a%b))
#define lcm(a,b) (a*b/gcd(a,b))
//O(n)求素数,1-n的欧拉数
#define N 100010
//A^x = A^(x % Phi(C) + Phi(C)) (mod C)
int a[][];
int aa[][];
int b[][];
int bb[][]; int c[][];
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(a,,sizeof(a));
memset(b,,sizeof(b));
memset(aa,,sizeof(aa));
memset(bb,,sizeof(bb));
memset(c,,sizeof(c));
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
scanf("%d",&a[i][j]);
a[i][j]%=;
/// cout<<"%%%"<<a[i][j]<<endl;
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
scanf("%d",&b[i][j]);
b[i][j]%=;
}
}
for(int i=; i<=n; i++)
{
int x=-;
for(int j=n; j>=; j--)
{
aa[i][j]=x; ///后退了一位 所以j:n~~0
if(a[i][j]) x=j;
//cout<<"~~~~"<<a[i][j]<<' '<<aa[i][j]<<endl;///记录矩阵中0的位置 赋值给aa【】【】
}
}
for(int i=; i<=n; i++)
{
int x=-;
for(int j=n; j>=; j--)
{
bb[i][j]=x;
if(b[i][j])x=j;
}
}
for(int i=; i<=n; i++)
{
for(int j=aa[i][]; j!=-; j=aa[i][j])
{
for(int k=bb[j][]; k!=-; k=bb[j][k]) ///a==0时 对应b那一列乘a==0 所以根据bb【j】来转变
c[i][k]+=a[i][j]*b[j][k];
}
}
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{
printf("%d",c[i][j]%);
if(j!=n)printf(" ");
else printf("\n");
}
}
}
return ;
}

HDU 4920 矩阵乘积 优化的更多相关文章

  1. Hdu 4920矩阵乘法(内存访问的讲究)

    题目链接 Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K ( ...

  2. hdu 4920 Matrix multiplication(矩阵乘法)2014多培训学校5现场

    Matrix multiplication                                                                           Time ...

  3. hdu 5068 线段树维护矩阵乘积

    http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转( ...

  4. HDU 5863 cjj's string game (矩阵乘法优化递推)

    题目大意:用k种字符构建两个长度为n的字符串(每种字符有无限多个),要求对应位置字符相同的连续子串最长长度为m,问方法数. 其中k,n,m是输入,n(1<=n<=1000000000), ...

  5. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  6. 卷积、矩阵乘积、高斯模糊滤波(降噪)、空域计算(2D卷积计算)、频域计算(FFT)的理解

    矩阵乘积:对应行列对应元素相乘的和组成新的矩阵 两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵 并将此乘积记为: ...

  7. HDU 4920.Matrix multiplication-矩阵乘法

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  8. HDU 4920(杭电多校训练#5 1010 题) Matrix multiplication(不知道该挂个什么帽子。。。)

    题目地址:pid=4920">HDU 4920 对这个题简直无语到极点. . .竟然O(n^3)的复杂度能过....方法有三.. 1:进行输入优化和输出优化. . (前提是你的输入优化 ...

  9. HDU 4920 Matrix multiplication(bitset)

    HDU 4920 Matrix multiplication 题目链接 题意:给定两个矩阵,求这两个矩阵相乘mod 3 思路:没什么好的想法,就把0的位置不考虑.结果就过了.然后看了官方题解,上面是用 ...

随机推荐

  1. Codeforces 791C. Bear and Different Names 模拟构造

    C. Bear and Different Names time limit per test:1 second memory limit per test:256 megabytes input:s ...

  2. 可读性很强的C语言的函数指针定义

    通常C/C++程序里面要用到大量的指针,其语法非常难以阅读.比如下面的vp指针类型: #include <iostream> using namespace std; typedef vo ...

  3. c sharp dll

    1. generate dll building .cs file, for example: myDll.cs using System; using System.Collections.Gene ...

  4. Moving Average from Data Stream LT346

    Given a stream of integers and a window size, calculate the moving average of all integers in the sl ...

  5. powerdesigner mysql逆向工程注释不显示问题

  6. mybatis学习 十一 缓存

    1. 应用程序和数据库交互的过程是一个相对比较耗时的过程2. 缓存存在的意义:让应用程序减少对数据库的访问,提升程序运行效率3. MyBatis 中默认 SqlSession 缓存(一级缓存)开启 同 ...

  7. Android音频系统之AudioFlinger(三)

    http://blog.csdn.net/xuesen_lin/article/details/8805091 1.1.1 PlaybackThread的循环主体 当一个PlaybackThread进 ...

  8. JS基础-表单元素-新表单元素-js概述

    1.表单元素 1.input元素 1.隐藏域和文件选项框 1.隐藏域 <input type="hidden"> 要提交给服务器的数据,但是不想展示给用户看可以放在隐藏 ...

  9. PHP字符串转实体函数

    与HTML实体相关的函数 htmlspecialchars函数 描述:预定义的字符转换为HTML实体 语法:string htmlspecialchars(string $string [,int $ ...

  10. iptables说明(转)

    原文:https://www.linuxidc.com/Linux/2016-09/134832.htm 前提基础: 当主机收到一个数据包后,数据包先在内核空间中处理,若发现目的地址是自身,则传到用户 ...