隐马尔科夫模型研究 stock 以及 lotto
说明
本文参考了这里
由于数据是连续的,因此使用了高斯隐马尔科夫模型:gaussianHMM
一、stock代码
import tushare as ts
import pandas as pd
import numpy as np
from hmmlearn.hmm import GaussianHMM
from matplotlib import cm, pyplot as plt
import seaborn as sns
sns.set_style('white')
'''
假定隐藏状态数目为4,观测状态数目为2
'''
# 1.准备 X
df = ts.get_hist_data('sh',start='2014-01-01',end='2017-07-27')[::-1] # 上证指数
close = np.log(df['close'])
low, high = np.log(df['low']), np.log(df['high'])
t = 5
X = pd.concat([close.diff(1), close.diff(t), high-low], axis=1)[t:] # 显状态时间序列(观测得到)
# 2.拟合 HMM
model = GaussianHMM(n_components=6, covariance_type="diag", n_iter=1000).fit(X)
Z = model.predict(X) # 隐状态时间序列
# 3.画图看看
plt.figure(figsize=(12, 7))
for i in range(model.n_components):
mask = (Z==i) # 注意这里的Z!!!
plt.plot_date(df.index[t:][mask], df['close'][t:][mask],'.',label=f'{i}th hidden state',lw=1)
plt.legend()
plt.grid(1)
plt.show()
效果图
解释
下面是对6种隐状态的一种可能的解释:【图文对不上,文字来自这里】
- 状态0————蓝色————震荡下跌
- 状态1————绿色————小幅的上涨
- 状态2————红色————牛市上涨
- 状态3————紫色————牛市下跌
- 状态4————黄色————震荡下跌
- 状态5————浅蓝色————牛市下跌
以上的意义归结是存在一定主观性的。因为HMM模型对输入的多维度观测变量进行处理后,只负责分出几个类别,而并不会定义出每种类别的实际含义。所以我们从图形中做出上述的判断。
所以,这种方法本质上是一种 Classification(分类) 或者 Clustering(聚类)
二、lotto 代码
import tushare as ts
import pandas as pd
import numpy as np
from hmmlearn.hmm import GaussianHMM
from matplotlib import cm, pyplot as plt
from matplotlib.widgets import MultiCursor
import seaborn as sns
sns.set_style('white')
import marksix_1
import talib as ta
'''
假定隐藏状态数目为6,观测状态数目为4
'''
# 1.准备 X
lt = marksix_1.Marksix()
lt.load_data(period=1000)
#series = lt.adapter(loc='0000001', zb_name='ptsx', args=(1,), tf_n=0)
m = 2
series = lt.adapter(loc='0000001', zb_name='mod', args=(m, lt.get_mod_list(m)), tf_n=0)
# 实时线
close = np.cumsum(series).astype(float)
# 低阶数据
t1, t2, t3 = 5, 10, 20
ma1 = ta.MA(close, timeperiod=t1, matype=0)
std1 = ta.STDDEV(close, timeperiod=t1, nbdev=1)
ma2 = ta.MA(close, timeperiod=t2, matype=0)
std2 = ta.STDDEV(close, timeperiod=t2, nbdev=1)
ma3 = ta.MA(close, timeperiod=t3, matype=0)
std3 = ta.STDDEV(close, timeperiod=t3, nbdev=1)
# 转换一
'''
t = t3
X = pd.DataFrame({'ma1':ma1,'ma2':ma2,'ma3':ma3,'std1':std1,'std2':std2,'std3':std3}, index=lt.df.index)[t:]
'''
# 转换二
t = t2
X = pd.DataFrame({'ma1':ma1,'ma2':ma2,'std1':std1,'std2':std2}, index=lt.df.index)[t:]
#close = np.log(df['close'])
#low, high = np.log(df['low']), np.log(df['high'])
#t = 5
#X = pd.concat([close.diff(1), close.diff(t), high-low], axis=1)[t:] # 显状态时间序列(观测得到)
# 2.拟合 HMM
model = GaussianHMM(n_components=6, covariance_type="diag", n_iter=1000).fit(X)
Z = model.predict(X) # 隐状态时间序列
# 3.画图看看
fig, axes = plt.subplots(2, 1, sharex=True)
ax1, ax2 = axes[0], axes[1]
show_period = 300
# 布林线
upperband, middleband, lowerband = ta.BBANDS(close, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)
axes[0].plot_date(lt.df.index[-show_period:], close[-show_period:], 'rd-', markersize = 3)
axes[0].plot_date(lt.df.index[-show_period:], upperband[-show_period:], 'y-')
axes[0].plot_date(lt.df.index[-show_period:], middleband[-show_period:], 'b-')
axes[0].plot_date(lt.df.index[-show_period:], lowerband[-show_period:], 'y-')
for i in range(model.n_components):
mask = (Z[-show_period:]==i) # 注意这里的Z!!!
axes[1].plot_date(lt.df.index[-show_period:][mask], close[-show_period:][mask],'d',markersize=3,label=f'{i}th hidden state',lw=1)
axes[1].legend()
axes[1].grid(1)
multi = MultiCursor(fig.canvas, (axes[0], axes[1]), color='b', lw=2)
plt.show()
效果图
隐马尔科夫模型研究 stock 以及 lotto的更多相关文章
- HMM基本原理及其实现(隐马尔科夫模型)
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...
- 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
- 隐马尔科夫模型(Hidden Markov Models)
链接汇总 http://www.csie.ntnu.edu.tw/~u91029/HiddenMarkovModel.html 演算法笔记 http://read.pudn.com/downloads ...
- 隐马尔科夫模型HMM
崔晓源 翻译 我们通常都习惯寻找一个事物在一段时间里的变化规律.在很多领域我们都希望找到这个规律,比如计算机中的指令顺序,句子中的词顺序和语音中的词顺序等等.一个最适用的例子就是天气的预测. 首先,本 ...
- 隐马尔科夫模型(HMM)
基本概念 1Markov Models 2Hidden Markov Models 3概率计算算法前向后向算法 1-3-1直接计算 1-3-2前向算法 1-3-3后向算法 4学习问题Baum-Welc ...
- 机器学习中的隐马尔科夫模型(HMM)详解
机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了.Russell等在文献[1]中指出:"在统计学中,图模型这个术语指包含贝叶 ...
- 隐马尔科夫模型 HMM(Hidden Markov Model)
本科阶段学了三四遍的HMM,机器学习课,自然语言处理课,中文信息处理课:如今学研究生的自然语言处理,又碰见了这个老熟人: 虽多次碰到,但总觉得一知半解,对其了解不够全面,借着这次的机会,我想要直接搞定 ...
随机推荐
- 【转】设置Qt应用程序图标及应用程序名
一直以来很纠结给qt应用程序添加图标问题,在网上收过一次,但是感觉不够完整,现将自己的实现过程记录下,以便以后查看: 通过网上的例子知道qt助手中有相关说明: Setting the Applicat ...
- SQLSERVER NULL和空字符串的区别 使用NULL是否节省空间
SQLSERVER NULL和空字符串的区别 使用NULL是否节省空间 这里只讨论字符串类型,int.datetime.text这些数据类型就不讨论了,因为是否节省空间是根据数据类型来定的 在写这篇文 ...
- 64位的Sql Server使用OPENROWSET导入xlsx格式的excel数据的时候报错(转载)
In the old times while all the CPUs were 32bit, we were happily using JET OLEDB Provider reaching Ex ...
- ELF文件结构描述
ELF目标文件格式最前部ELF文件头(ELF Header),它包含了描述了整个文件的基本属性,比如ELF文件版本.目标机器型号.程序入口地址等.其中ELF文件与段有关的重要结构就是段表(Sectio ...
- Django商城项目笔记No.7用户部分-注册接口-判断用户名和手机号是否存在
Django商城项目笔记No.7用户部分-注册接口-判断用户名和手机号是否存在 判断用户名是否存在 后端视图代码实现,在users/view.py里编写如下代码 class UsernameCount ...
- PyQt5--ShowTips
# -*- coding:utf-8 -*- ''' Created on Sep 13, 2018 @author: SaShuangYiBing ''' import sys from PyQt5 ...
- css3自定义滚动条背景透明
.editor{ overflow:hidden; height:640px; padding:0 45px; border: 0 none; outline: none; } .editor::-w ...
- 死磕nginx系列--使用upsync模块实现负载均衡
问题描述 nginx reload是有一定损耗的,如果你使用的是长连接的话,那么当reload nginx时长连接所有的worker进程会进行优雅退出,并当该worker进程上的所有连接都释放时,进程 ...
- Net dll组件版本兼容问题
dll组件版本兼容问题,是生产开发中经常遇到的问题,常见组件兼容问题如:Newtonsoft.Json,log4net等 为了节约大家时间,想直接看解决方法的,可直接点击目录3.4 目录 1.版本兼容 ...
- Kubernetes1.91(K8s)安装部署过程(一)--证书安装
安装前忠告:如果你用的是虚拟机,强烈不建议你使用克隆(链接克隆)的方式,至于完整克隆不知道有没有问题,每一台全新安装centos7系统最好. 一.安装前主题环境准备 1.docker安装 建议使用官网 ...