[HZNOI #514] Magic

题意

给定一个 \(n\) 个点 \(m\) 条边的有向图, 每个点有两个权值 \(a_i\) 和 \(b_i\), 可以以 \(b_i\) 的花费把第 \(i\) 个点的 \(a_i\) 变成 \(0\). 最后每个点 \(i\) 产生的花费为所有从 \(i\) 出发能通过一条有向边直接到达的点 \(j\) 的 \(a_j\) 的 \(\max\). 最小化这个过程中的总花费.

\(n\le 1000,m\le50000\)

题解

一点都不套路的最小割.

果然我是不会网络流的.

对于每个点, 如果将它的邻接点按照 \(a_j\) 降序排序的话, 不难发现必然要干掉一个前缀的所有 \(a_j\) 才能让这个点在最后统计的时候产生的花费变小. 但是多次干掉同一个点不能重复计算花费.

那么我们一点都不自然地想到最小割. 先把所有点拆成两个, 一个负责计算最终统计时的花费 (A类点), 一个负责计算被干掉的时候产生的花费 (B类点). 被干掉的时候产生的花费直接连一条流量为 \(b_i\) 的边到 \(t\) 就可以了. 最终统计时的花费先从 \(s\) 连一条 \(\infty\) 边到当前点, 然后按照 \(a_j\) 降序拉出一条链来, 链上的每个点代表一条边, 权值为这条边到达的点的 \(a_j\). 然后再从链上的每个点连一条 \(\infty\) 边到 \(j\) 对应的点. 这样的话如果 \(s\verb|-|t\) 被割断, 那么对于每一个 A 类点, 后面必然是割掉了某个 \(a_j\), 同时所有大于被割断的 \(a_j\) 的边邻接的点必然都已经被割掉了 \(b_i\).

建图Dinic就可以了.

这个拉链然后最小割的套路依然没有学会...果然我还是太菜了QAQ...

什么你问我 \(n+m\) 个点Dinic怎么跑过去的? 我怎么知道?Dinic的运行速度大概都是靠信仰吧...

恋恋世界第一!

参考代码

#include <bits/stdc++.h>

const int MAXV=1e5+10;
const int MAXE=5e6+10;
const int INF=0x7FFFFFFF; struct Edge{
int from;
int to;
int flow;
Edge* rev;
Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* cur[MAXV];
Edge* top=E; int v;
int e;
int a[1010];
int b[1010];
int depth[MAXV];
std::vector<int> link[1010]; bool BFS(int,int);
int Dinic(int,int);
int DFS(int,int,int);
void Insert(int,int,int); int main(){
freopen("magic.in","r",stdin);
freopen("magic.out","w",stdout);
scanf("%d%d",&v,&e);
for(int i=1;i<=v;i++)
scanf("%d",a+i);
for(int i=1;i<=v;i++)
scanf("%d",b+i);
for(int i=0;i<e;i++){
int a,b;
scanf("%d%d",&a,&b);
link[a].push_back(b);
}
for(int i=1;i<=v;i++)
std::sort(link[i].begin(),link[i].end(),[](int a,int b){return ::a[a]>::a[b];});
int s=0,t=1,cnt=v*2+1;
for(int i=1;i<=v;i++){
Insert(s,i+1,INF);
Insert(i+v+1,t,b[i]);
int last=i+1;
for(size_t j=0;j<link[i].size();j++){
++cnt;
Insert(cnt,v+link[i][j]+1,INF);
Insert(last,cnt,a[link[i][j]]);
last=cnt;
}
}
printf("%d\n",Dinic(s,t));
return 0;
} int Dinic(int s,int t){
int ans=0;
while(BFS(s,t))
ans+=DFS(s,INF,t);
return ans;
} bool BFS(int s,int t){
memset(depth,0,sizeof(depth));
std::queue<int> q;
q.push(s);
depth[s]=1;
cur[s]=head[s];
while(!q.empty()){
s=q.front();
q.pop();
for(Edge* i=head[s];i!=NULL;i=i->next){
if(i->flow>0&&depth[i->to]==0){
depth[i->to]=depth[s]+1;
cur[i->to]=head[i->to];
if(i->to==t)
return true;
q.push(i->to);
}
}
}
return false;
} int DFS(int s,int flow,int t){
if(s==t||flow<=0)
return flow;
int rest=flow;
for(Edge*& i=cur[s];i!=NULL;i=i->next){
if(i->flow>0&&depth[i->to]==depth[s]+1){
int tmp=DFS(i->to,std::min(rest,i->flow),t);
if(tmp<=0)
depth[i->to]=0;
rest-=tmp;
i->flow-=tmp;
i->rev->flow+=tmp;
if(rest<=0)
break;
}
}
return flow-rest;
} inline void Insert(int from,int to,int flow){
top->from=from;
top->to=to;
top->flow=flow;
top->rev=top+1;
top->next=head[from];
head[from]=top++; top->from=to;
top->to=from;
top->flow=0;
top->rev=top-1;
top->next=head[to];
head[to]=top++;
}

[HZNOI #koishi] Magic的更多相关文章

  1. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  2. [8.3] Magic Index

    A magic index in an array A[0...n-1] is defined to be an index such that A[i] = i. Given a sorted ar ...

  3. Python魔术方法-Magic Method

    介绍 在Python中,所有以"__"双下划线包起来的方法,都统称为"Magic Method",例如类的初始化方法 __init__ ,Python中所有的魔 ...

  4. 【Codeforces717F】Heroes of Making Magic III 线段树 + 找规律

    F. Heroes of Making Magic III time limit per test:3 seconds memory limit per test:256 megabytes inpu ...

  5. 2016中国大学生程序设计竞赛 - 网络选拔赛 C. Magic boy Bi Luo with his excited tree

    Magic boy Bi Luo with his excited tree Problem Description Bi Luo is a magic boy, he also has a migi ...

  6. 一个快速double转int的方法(利用magic number)

    代码: int i = *reinterpret_cast<int*>(&(d += 6755399441055744.0)); 知识点: 1.reinterpret_cast&l ...

  7. MAGIC XPA最新版本Magic xpa 2.4c Release Notes

    New Features, Feature Enhancements and Behavior ChangesSubforms – Behavior Change for Unsupported Ta ...

  8. Magic xpa 2.5发布 Magic xpa 2.5 Release Notes

    Magic xpa 2.5發佈 Magic xpa 2.5 Release Notes Magic xpa 2.5 Release NotesNew Features, Feature Enhance ...

  9. How Spring Boot Autoconfiguration Magic Works--转

    原文地址:https://dzone.com/articles/how-springboot-autoconfiguration-magic-works In my previous post &qu ...

随机推荐

  1. 【sh文件权限】无法启动tomcat -bash: ./startup.sh: Permission denied

    今天在Linux上启动Tomcat,结果弹出:-bash: ./startup.sh: Permission denied 的提示. 这是因为用户没有权限,而导致无法执行, 用命令chmod 修改一下 ...

  2. map映照容器(常用的使用方法总结)

    map映照容器的数据元素是由一个键值和一个映照数据组成的,键值和映照数据之间具有一一对应的关系.map与set集合容器一样,不允许插入的元素的键值重复. /*关于C++STL中map映照容器的学习,看 ...

  3. Silverlight 查询DataGrid 中匹配项 ,后台改变选中行颜色

    需求:根据关键字(参会人号码或名称)查找参会人,在datagird 中高亮显示 界面:我在界面上增加了一个文本框和按钮,进行查找操作 操作说明: 根据关键字进行搜索:输入关键字 点击查找,如果找到 以 ...

  4. [转]Magento on Steroids – Best practice for highest performance

    本文转自:https://www.mgt-commerce.com/blog/magento-on-steroids-best-practice-for-highest-performance/ Th ...

  5. 设计模式学习总结(一)——设计原则与UML统一建模语言

    一.概要 设计模式(Design Pattern)是一套被反复使用.多数人知晓的.经过分类的.代码设计经验的总结. 使用设计模式的目的:为了代码可重用性.让代码更容易被他人理解.保证代码可靠性. 设计 ...

  6. 【MongoDB-query查询条件】

    在上一篇中简要使用了C# 对MongoDB进行数据操作,这里补充一些MongoDB query查询条件文档: Query.All("name", "a",&qu ...

  7. 【游记】Noip2018

    Day -1 Noip还有1天,加油!!! 今天上午就肝一肝树形DP,维护一些玄学差分,和前缀数组什么的吧 下午以及晚上搞一搞记忆化搜索和最朴素的DFS这样子吧. 还要打一打板子也是极有必要的qwq ...

  8. (六)彻底理解synchronized

    1.sychronized简介 在学习知识之前,我们先来看一个现象 public class SynchronizedDemo implements Runnable { private static ...

  9. oracle逐步学习总结之约束(基础五)

    原创作品,转自请在文章明显位置注明出处:https://www.cnblogs.com/sunshine5683/p/10167717.html oracle中的约束主要有非空约束(not null) ...

  10. 取石子游戏(hdu1527 博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...