1. Classification losses

每次输入一个样本,对样本进行类别预测,根据预测类别和真实标签得到对应的分类损失。

2. Pairwise losses

每次输入两个样本,数据集包含了这两个样本是否相似的信息。计算损失时根据模型在这两个样本上的输出和相似信息进行计算。

3. Triplet losses

每次输入三个样本,\(x, x_-, x_+\)。其中\(x_-和x_+\)分别为\(x\)的负样本(不相似)和正样本(相似)。根据这三个数据在模型的输出以及对应的相似信息得到损失。

Quadruplet losses

每次输入四个数据,这四个数据都是不同的,其中包含了一对相似数据和一对不相似数据。根据四个数据在模型的输出和对应的相似信息得到损失。

疑问

  • 不同losses之间的优缺点以及适用场景。

参考

  • Ustinova E, Lempitsky V. Learning Deep Embeddings with Histogram Loss[J]. 2016.

Classification losses. It has been observed in [8] and confirmed later in multiple works (e.g. [15])
that deep networks trained for classification can be used for deep embedding. In particular, it is
sufficient to consider an intermediate representation arising in one of the last layers of the deep
network. The normalization is added post-hoc. Many of the works mentioned below pre-train their
embeddings as a part of the classification networks.
Pairwise losses. Methods that use pairwise losses sample pairs of training points and score them
independently. The pioneering work on deep embeddings [3] penalizes the deviation from the unit
cosine similarity for positive pairs and the deviation from -1 or -0:9 for negative pairs. Perhaps,
the most popular of pairwise losses is the contrastive loss [5, 20], which minimizes the distances in
the positive pairs and tries to maximize the distances in the negative pairs as long as these distances
are smaller than some margin M. Several works pointed to the fact that attempting to collapse all
positive pairs may lead to excessive overfitting and therefore suggested losses that mitigate this
effect, e.g. a double-margin contrastive loss [12], which drops to zero for positive pairs as long as
their distances fall beyond the second (smaller) margin. Finally, several works use non-hinge based
pairwise losses such as log-sum-exp and cross-entropy on the similarity values that softly encourage
the similarity to be high for positive values and low for negative values (e.g. [24, 27]). The main
problem with pairwise losses is that the margin parameters might be hard to tune, especially since
the distributions of distances or similarities can be changing dramatically as the learning progresses.
While most works “skip” the burn-in period by initializing the embedding to a network pre-trained for classification [24], [22] further demonstrated the benefit of admixing the classification loss during
the fine-tuning stage (which brings in another parameter).
Triplet losses. While pairwise losses care about the absolute values of distances of positive and
negative pairs, the quality of embeddings ultimately depends on the relative ordering between positive
and negative distances (or similarities). Indeed, the embedding meets the needs of most practical
applications as long as the similarities of positive pairs are greater than similarities of negative pairs
[19, 26]. The most popular class of losses for metric learning therefore consider triplets of points
x0; x+; x-, where x0; x+ form a positive pair and x0; x- form a negative pair and measure the
difference in their distances or similarities. Triplet-based loss can then e.g. be aggregated over all
triplets using a hinge function of these differences. Triplet-based losses are popular for large-scale
embedding learning [4] and in particular for deep embeddings [13, 14, 17, 21, 28]. Setting the margin
in the triplet hinge-loss still represents the challenge, as well as sampling “correct” triplets, since the
majority of them quickly become associated with zero loss. On the other hand, focusing sampling on
the hardest triplets can prevent efficient learning [17]. Triplet-based losses generally make learning
less constrained than pairwise losses. This is because for a low-loss embedding, the characteristic
distance separating positive and negative pairs can vary across the embedding space (depending on
the location of x0), which is not possible for pairwise losses. In some situations, such added flexibility
can increase overfitting.
Quadruplet losses. Quadruplet-based losses are similar to triplet-based losses as they are computed
by looking at the differences in distances/similarities of positive pairs and negative pairs. In the case
of quadruplet-based losses, the compared positive and negative pairs do not share a common point
(as they do for triplet-based losses). Quadruplet-based losses do not allow the flexibility of tripletbased losses discussed above (as they includes comparisons of positive and negative pairs located in
different parts of the embedding space). At the same time, they are not as rigid as pairwise losses, as
they only penalize the relative ordering for negative pairs and positive pairs. Nevertheless, despite
these appealing properties, quadruplet-based losses remain rarely-used and confined to “shallow”
embeddings [9, 30]. We are unaware of deep embedding approaches using quadruplet losses. A
potential problem with quadruplet-based losses in the large-scale setting is that the number of all
quadruplets is even larger than the number of triplets. Among all groups of losses, our approach
is most related to quadruplet-based ones, and can be seen as a way to organize learning of deep
embeddings with a quarduplet-based loss in an efficient and (almost) parameter-free manner.

四种losses的更多相关文章

  1. 两个变量交换的四种方法(Java)

    对于两种变量的交换,我发现四种方法,下面我用Java来演示一下. 1.利用第三个变量交换数值,简单的方法. (代码演示一下) class TestEV //创建一个类 { public static ...

  2. Android开发之基本控件和详解四种布局方式

    Android中的控件的使用方式和iOS中控件的使用方式基本相同,都是事件驱动.给控件添加事件也有接口回调和委托代理的方式.今天这篇博客就总结一下Android中常用的基本控件以及布局方式.说到布局方 ...

  3. TCP四种计时器

    TCP共使用以下四种计时器,即重传计时器.坚持计时器.保活计时器和时间等待计时器 .这几个计时器的主要特点如下:      1.重传计时器      当TCP发送报文段时,就创建该特定报文段的重传计时 ...

  4. C++四种类型转换方式。

    类型转换有c风格的,当然还有c++风格的.c风格的转换的格式很简单(TYPE)EXPRESSION,但是c风格的类型转换有不少的缺点,有的时候用c风格的转换是不合适的,因为它可以在任意类型之间转换,比 ...

  5. C#批量插入数据到Sqlserver中的四种方式

    我的新书ASP.NET MVC企业级实战预计明年2月份出版,感谢大家关注! 本篇,我将来讲解一下在Sqlserver中批量插入数据. 先创建一个用来测试的数据库和表,为了让插入数据更快,表中主键采用的 ...

  6. 织梦DedeCMS模板防盗的四种方法

    织梦(DedeCMS)模板也是一种财富,不想自己辛辛苦苦做的模板被盗用,在互联网上出现一些和自己一模一样的网站,就需要做好模板防盗.本文是No牛收集整理自网络,不过网上的版本都没有提供 Nginx 3 ...

  7. 四种比较简单的图像显著性区域特征提取方法原理及实现-----> AC/HC/LC/FT。

    laviewpbt  2014.8.4 编辑 Email:laviewpbt@sina.com   QQ:33184777 最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以 ...

  8. 像画笔一样慢慢画出Path的三种方法(补充第四种)

    今天大家在群里大家非常热闹的讨论像画笔一样慢慢画出Path的这种效果该如何实现. 北京-LGL 博客号@ligl007发起了这个话题.然后各路高手踊跃发表意见.最后雷叔 上海-雷蒙 博客号@雷蒙之星 ...

  9. 让一个图片在div中居中(四种方法)

    第一种方法: <div class="title"> <div class="flag"></div> <div cl ...

随机推荐

  1. 13.5.SolrCloud集群使用手册之数据导入

    转载请出自出处:http://www.cnblogs.com/hd3013779515/ 1.使用curl命令方式 SolrCloud时会根据路由规则路由到各个shard. 删除所有数据 curl h ...

  2. Javascript之DOM性能优化

    原文地址:http://ce.sysu.edu.cn/hope/Item/140355.aspx 作者:陈古松 来源:本站原创 发布时间:2015-03-14 更新时间:2015-03-14  点击数 ...

  3. jQuery1.9+ 废弃的函数和方法 升级Jquery版本遇到的问题

    面临问题 很久没关注JQuery了,今天突然想升级一下系统中使用的jquery版本,突然发现,升级JQuery版本到1.9之后出现了很多问题,比如:$.browser is undefined.突然就 ...

  4. 友盟推送SDK集成测试、常见问题以及注意事项总结

    最近为了解决公司APP在一些手机出现的推送问题重新集成了最新版的友盟推送SDK,花费了几天时间终于把集成和测试工作完成,最终在华为,Nexus,三星,小米,HTC,魅族等10多部手机上测试并达到了预想 ...

  5. linux 的常用命令---------第四阶段

    权限管理 “4” “r” → 读权限: 查看文件内容: 是否能够列出目录结构. “2” “w” → 写权限: 编辑文件内容: 是否能够创建.删除.复制.移动目录. “1” “x” → 执行权限: 对二 ...

  6. Windows下安装Tensorflow—GPU版本

    https://blog.csdn.net/weixin_39290638/article/details/80045236

  7. OpenCV——积分图计算

    #include <opencv2/opencv.hpp> #include <iostream> #include "math.h" using name ...

  8. Python2.7-time

    time模块,与datetime模块功能有所重合,time较为简单明了,若只需要当前时间或日期或是sleep,直接用time模块,需要更复杂的时间间隔等情况用datetime模块更好 1.获得time ...

  9. STM32 & FreeRTOS & KFIFO (巧夺天工)

    巧夺天工 的 KFIFO ,用STM32实现. 实现源文件如下: /********************************************************** * * 文件名 ...

  10. 网络运营商名称显示&amp;SIM名称显示

    一 网络名称显示这部分比較复杂.Spec对这也有明白的规定,依据其优先级由高往低介绍(其优先级參考TS 22.101), 1.       Enhanced Operator Name String. ...