题目:

http://acm.hdu.edu.cn/showproblem.php?pid=6315

Naive Operations

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Others)

Problem Description
In a galaxy far, far away, there are two integer sequence a and b of length n.
b is a static permutation of 1 to n. Initially a is filled with zeroes.
There are two kind of operations:
1. add l r: add one for al,al+1...ar
2. query l r: query ∑ri=l⌊ai/bi⌋
 
Input
There are multiple test cases, please read till the end of input file.
For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
In the second line, n integers separated by spaces, representing permutation b.
In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.
1≤n,q≤100000, 1≤l≤r≤n, there're no more than 5 test cases.
 
Output
Output the answer for each 'query', each one line.
 
Sample Input
5 12
1 5 2 4 3
add 1 4
query 1 4
add 2 5
query 2 5
add 3 5
query 1 5
add 2 4
query 1 4
add 2 5
query 2 5
add 2 2
query 1 5
 
Sample Output
1 1 2 4 4 6
 
题意:给定一个初始数组b和一个初始值全部为0的数组a,每次操作可以在给定的区间(l,r)内让a[i](l=<i<=r)加一,或者查询区间区间(l,r)中a[i]/b[i](l=<i<=r)(取整)的和。
思路:
用线段树存放a数组,做好最小更新标记,达到则向下更新
代码:
#include<bits/stdc++.h>
#define fi first
#define se second
#define INF 0x3f3f3f3f
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
#define pqueue priority_queue
#define NEW(a,b) memset(a,b,sizeof(a))
const double pi=4.0*atan(1.0);
const double e=exp(1.0);
const int maxn=3e6+;
typedef long long LL;
typedef unsigned long long ULL;
//typedef pair<LL,LL> P;
const LL mod=1e9+;
using namespace std;
struct node{
LL l,r,sum,g,mi;
LL lazy;
LL mid(){
return (l+r)>>;
}
}a[maxn];
int b[maxn];
void build(int l,int r,int num){
a[num].l=l;
a[num].r=r;
a[num].lazy=;
if(l==r){
a[num].sum=;
a[num].g=;
a[num].mi=b[l];
}
else{
build(l,a[num].mid(),num<<);
build(a[num].mid()+,r,(num<<)|);
a[num].g=a[num<<].g+a[(num<<)|].g;
a[num].mi=min(a[num<<].mi,a[(num<<)|].mi);
}
}
void as(int d)
{
if(a[d].lazy)
{
a[(d<<)].lazy+=a[d].lazy;
a[(d<<|)].lazy+=a[d].lazy;
a[(d<<)].mi-=a[d].lazy;
a[(d<<|)].mi-=a[d].lazy;
a[d].lazy=;
}
}
LL Find(int l,int r,int num){
if(a[num].l==l&&a[num].r==r){
return a[num].g;
}
if(l>a[num].mid()){
return Find(l,r,(num<<)|);
}
else if(r<=a[num].mid()){
return Find(l,r,num<<);
}
else{
return Find(l,a[num].mid(),num<<)+Find(a[num].mid()+,r,(num<<)|);
}
}
void add(int l,int r,int num,LL x){
if(a[num].l==l&&a[num].r==r||x==){
a[num].lazy+=x;
a[num].mi-=x;
if(a[num].mi>){
return ;
}
else if(l!=r){
as(num);
add(l,a[num].mid(),num<<,);
add(a[num].mid()+,r,(num<<)|,);
a[num].mi=min(a[num<<].mi,a[(num<<)|].mi);
a[num].g=a[num<<].g+a[(num<<)|].g;
return;
}
}
if(l==r&&a[num].l==l&&a[num].r==r)
{
if(a[num].mi<=)
{
a[num].mi=a[num].lazy=;
a[num].mi=b[l];
a[num].g++;
}
return;
}
as(num);
if(l>a[num].mid()){
add(l,r,(num<<)|,x);
}
else if(r<=a[num].mid()){
add(l,r,num<<,x);
}
else {
add(l,a[num].mid(),num<<,x);
add(a[num].mid()+,r,(num<<)|,x);
}
a[num].mi=min(a[num<<].mi,a[(num<<)|].mi);
a[num].g=a[num<<].g+a[(num<<)|].g;
//cout<<'a'<<a[num].l<<' '<<a[num].r<<' '<<a[num].g<<endl;
}
int main(){
fio;
int n,m;
string op;
int x,y;
while(cin>>n>>m){
for(int i=;i<=n;i++){
cin>>b[i];
}
build(,n,);
while(m--){
cin>>op>>x>>y;
if(op[]=='a'){
add(x,y,,);
}
else if(op[]=='q'){ add(x,y,,);
cout<<Find(x,y,)<<endl;
}
}
}
}

HDU 6351 Naive Operations(线段树)的更多相关文章

  1. 杭电多校第二场 hdu 6315 Naive Operations 线段树变形

    Naive Operations Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Other ...

  2. HDU 6315 Naive Operations(线段树区间整除区间)

    Problem DescriptionIn a galaxy far, far away, there are two integer sequence a and b of length n.b i ...

  3. HDU-DuoXiao第二场hdu 6315 Naive Operations 线段树

    hdu 6315 题意:对于一个数列a,初始为0,每个a[ i ]对应一个b[i],只有在这个数字上加了b[i]次后,a[i]才会+1. 有q次操作,一种是个区间加1,一种是查询a的区间和. 思路:线 ...

  4. HDU - 6315 Naive Operations (线段树+思维) 2018 Multi-University Training Contest 2

    题意:数量为N的序列a和b,a初始全为0,b为给定的1-N的排列.有两种操作:1.将a序列区间[L,R]中的数全部+1:2.查询区间[L,R]中的 ∑⌊ai/bi⌋(向下取整) 分析:对于一个位置i, ...

  5. HDU 6315 Naive Operations(线段树+复杂度均摊)

    发现每次区间加只能加1,最多全局加\(n\)次,这样的话,最后的答案是调和级数为\(nlogn\),我们每当答案加1的时候就单点加,最多加\(nlogn\)次,复杂度可以得当保证. 然后问题就是怎么判 ...

  6. HDU - 6315(2018 Multi-University Training Contest 2) Naive Operations (线段树区间操作)

    http://acm.hdu.edu.cn/showproblem.php?pid=6315 题意 a数组初始全为0,b数组为1-n的一个排列.q次操作,一种操作add给a[l...r]加1,另一种操 ...

  7. hdu Naive Operations 线段树

    题目大意 题目链接Naive Operations 题目大意: 区间加1(在a数组中) 区间求ai/bi的和 ai初值全部为0,bi给出,且为n的排列,多组数据(<=5),n,q<=1e5 ...

  8. HDU6315 Naive Operations(线段树 复杂度分析)

    题意 题目链接 Sol 这题关键是注意到题目中的\(b\)是个排列 那么最终的答案最多是\(nlogn\)(调和级数) 设\(d_i\)表示\(i\)号节点还需要加\(d_i\)次才能产生\(1\)的 ...

  9. 2018HDU多校二 -F 题 Naive Operations(线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6315 In a galaxy far, far away, there are two integer ...

随机推荐

  1. eclipse聚合工程如何提交SVN,如何从SVN下载

    提交: 比如聚合工程为taotao-manager,包含了taotao1,taotao2,taotao3等项目,在提交SVN只需 提交taotao-manager就可以了 1.右键taotao-man ...

  2. ASP.NET WebApi 图片上传

    以下是代码的实现过程: Html页面表单布局: <form id="UpPicture" enctype="multipart/form-data" ac ...

  3. windows服务器自动删除日志文件

    https://blog.csdn.net/u010050174/article/details/72510367 步骤: 1.新建 一个bat脚本 2.添加到window执行计划中,进行每日执行. ...

  4. a标签自执行点击事件

    //html <a href='http://www.baidu.com' ><button id='sss'>百度</button></a> //原生 ...

  5. vue-i18n

    安装 npm install vue-i18n 初始化 import VueI18n from 'vue-i18n' Vue.use(VueI18n) const messages = { zh: { ...

  6. Linux 设置IP地址,并能连接外网

    1,如果是 centos6,请修改  vi /etc/sysconfig/network-scripts/ifcfg-eth0 2,如果是 centos7,请修改 => vi /etc/sysc ...

  7. 关于sql链接超时的问题

    也许你会说,我在连接字符串中已经 设置了 Connect Timeout=80000 ,并且数据库中超时连接也是设置的值是一个很大的值.为啥到了30秒,仍然超时了呢??         这是因为:   ...

  8. mysql每天凌晨0点准时启动taskeng.exe如何关闭

    MySQL弹出一个taskeng.exe. 内容如下:=====================Start Initialization====================mysql Instal ...

  9. mac下shell给文件名批量加前缀

    用rename命令 如果没装的话执行下面这个命令安装rename brew install rename rename 's/^/logo_/' *.png

  10. nodejs 热更新插件

    键入命令: npm -g install supervisor supervisor必须安装到全局 可以用supervisor 来启动服务 命令supervisor app.js