全网唯一一篇容斥题解

Description

Solution

看到这个题,大部分人想的是状压dp

但是我是个蒟蒻没想到,就用容斥切掉了。

并且复杂度比一般状压低,

(其实这个容斥的算法,提出来源于ywy_c_asm)

(然而我知道了这个算法,竟然和他写的不一样,而且比他跑的快)

进入正题:

我们需要统计恰好满足匹配k个的情况。

那么,我们可以先找出来,恰好满足n个,n-1,n-2。。。k个的情况。

分别记为ans[i]

ans[i]怎么算呢?

先给出公式:

ans[i]=cal(i)-∑C(j,i)×ans[j] 其中,i+1<=j<=n

cal(i)表示,从n个中任意选择i个,对于所有选择的情况,的方案数的和。

cal(i)可以dfs暴力C(n,i)枚举,每次统计答案。计入tot

void dfs(int x,int has){
if(x==n+){
if(has!=up) return;
ll lp=;
for(int j=;j<=len;j++){
las=-;
for(int i=;i<=up;i++){
if(a[mem[i]][j]!='?'){
if(las==-){
las=a[mem[i]][j]-'a';
}
else if(las!=a[mem[i]][j]-'a') return;
}
}
if(las==-)lp=(lp*)%mod;
}
(tot+=lp)%=mod;
return;
}
if(has<up) {
mem[++cnt]=x;
dfs(x+,has+);
mem[cnt--]=;
}
if(n-x>=up-has) dfs(x+,has);
}

至于后面减去的部分。就是容斥的内容了。

大家可以自己画一个韦恩图理解一下。

这里有一个例子:n=4

现在我们要算ans[2],也就是恰好匹配2个的T的方案数

就是黄色的部分。

红色的数字是这个区域被算cal(i)的次数。

可见,三个点的重复区域,由于有C(3,2)种方法选到,所以会被算C(3,2)次。

所以减去所有的ans[3]即可。

其他情况同理。

最后输出ans[1]

组合数打表。

理论复杂度:
O(n×len×2^15)

Code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
const int M=;
const int mod=;
char a[N][M];
int len;
int n,t,k;
int mem[N],cnt;
ll ans[N];
ll c[N][N];
ll sum;
ll tot;//tot measures
int up;//choose
int las;
void dfs(int x,int has){//dfs计算tot
if(x==n+){
if(has!=up) return;
ll lp=;
for(int j=;j<=len;j++){
las=-;
for(int i=;i<=up;i++){
if(a[mem[i]][j]!='?'){
if(las==-){
las=a[mem[i]][j]-'a';
}
else if(las!=a[mem[i]][j]-'a') return;//两个字符不一样,无合法方案
}
}
if(las==-)lp=(lp*)%mod;//如果都是‘?’可以随便填,否则只有一种
}
(tot+=lp)%=mod;
return;
}
if(has<up) {
mem[++cnt]=x;
dfs(x+,has+);
mem[cnt--]=;
}
if(n-x>=up-has) dfs(x+,has);
} void clear(){
memset(ans,,sizeof ans);
sum=;
len=;
}
int main()
{
for(int i=;i<=N-;i++){
c[i][]=;
for(int j=;j<=i;j++){
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
}
scanf("%d",&t);
while(t--){
clear();//清空数组,其实没有必要
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%s",a[i]+);
}
len=strlen(a[]+);//长度 for(int i=n;i>=k;i--){//ans[i]计算
tot=;up=i;
dfs(,);
sum=;
for(int j=i+;j<=n;j++){//容斥的处理
(sum+=c[j][i]*ans[j])%=mod;
}
ans[i]=(tot-sum+mod)%mod;
}
printf("%lld\n",ans[k]);
}
return ;
}

[SDOI2009]Bill的挑战——全网唯一 一篇容斥题解的更多相关文章

  1. [BZOJ3523][Poi2014]KLO-Bricks——全网唯一 一篇O(n)题解+bzoj最优解

    Description 有n种颜色的砖块,第i种颜色的砖块有a[i]个,你需要把他们放成一排,使得相邻两个砖块的颜色不相同,限定第一个砖块的颜色是start,最后一个砖块的颜色是end,请构造出一种合 ...

  2. 【BZOJ1879】[SDOI2009]Bill的挑战(动态规划)

    [BZOJ1879][SDOI2009]Bill的挑战(动态规划) 题面 BZOJ 洛谷 题解 本来还想着容斥来着,这个数据范围直接暴力就好.设\(f[i][S]\)表示当前填到了第\(i\)位,和\ ...

  3. bzoj千题计划207:bzoj1879: [Sdoi2009]Bill的挑战

    http://www.lydsy.com/JudgeOnline/problem.php?id=1879 f[i][j] 表示匹配了i个字符,匹配字符串的状态为j的方案数 枚举下一个字符是什么 计算加 ...

  4. 【BZOJ1879】[Sdoi2009]Bill的挑战 状压DP

    [BZOJ1879][Sdoi2009]Bill的挑战 Description Input 本题包含多组数据.  第一行:一个整数T,表示数据的个数.  对于每组数据:  第一行:两个整数,N和K(含 ...

  5. bzoj 1879: [Sdoi2009]Bill的挑战

    题目链接 bzoj 1879: [Sdoi2009]Bill的挑战 题解 n<=15,装压吧 对所有字符串进行装压 可以预处理一个数组can[i][j]表示所有的字符串中,有哪些可以在第i位匹配 ...

  6. [bzoj1879][Sdoi2009]Bill的挑战_动态规划_状压dp

    Bill的挑战 bzoj-1879 Sdoi-2009 题目大意: 注释:$1\le t \le 5$,$1\le m \le 15$,$1\le length \le 50$. 想法: 又是一个看数 ...

  7. [LuoguP2167][SDOI2009]Bill的挑战_容斥原理/状压dp

    Bill的挑战 题目链接:https://www.luogu.org/problem/P2167 数据范围:略. 题解: 因为$k$特别小,想到状压. 状压的方式也非常简单,就是暴力枚举. 但是会不会 ...

  8. 【[SDOI2009]Bill的挑战】

    一看题解好像全是状压DP,那么我就来补充一个容斥写法吧 乍一看,好像是水题,枚举选哪k个串,然后判断 1,如果这k个串中至少两个串某位置确定且不相同,答案显然为02,如果这个位置只被有且仅有一个串确定 ...

  9. bzoj 1879 [Sdoi2009]Bill的挑战(状压DP)

    Description  Input 本题包含多组数据. 第一行:一个整数T,表示数据的个数. 对于每组数据: 第一行:两个整数,N和K(含义如题目表述). 接下来N行:每行一个字符串. Output ...

随机推荐

  1. 蓝牙inquiry流程之Inquiry Complete处理

    inquiry流程一般持续有12s多,当inquiry完成的时候,设备端会上报一个Event: Inquiry Complete 上来,那协议栈是如何把这个事件上传到应用层的呢?本篇文章来分析一下其具 ...

  2. PowerBI开发 第十二篇:钻取

    钻取是指沿着层次结构(维度的层次)查看数据,钻取可以变换分析数据的粒度.钻取分为下钻(Drill-down)和上钻(Drill-up),上钻是沿着数据的维度结构向上聚合数据,在更大的粒度上查看数据的统 ...

  3. MODIS 数据产品预处理

    MODIS 数据产品预处理 1  MCTK重投影 第一步:安装ENVI的MCTK扩展工具 解压压缩包,将其中的mctk.sav与modis_products.scsv文件复制到如图所示,相应的ENVI ...

  4. idea创建web项目教程

    官网下载idea,安装配置好后,双击进来,第一次创建项目时新建是这样的 第一步:   第二步:创建项目名和项目存放的路径 点finish进入这里   第三步: 第二步点OK进入这个页面,点上面那个加号 ...

  5. GitHub 新手教程 五,Git GUI 新手教程(2),Clone Existing Repository 克隆代码库

    1,注意: 网上大部分教程都是从“Create New Repository”讲起,这其实给我们新手埋了很大的一个坑.按照类似的教程,仅做到一半,各种错误窗口就会弹出来了,像什么:“非同一代码库”.“ ...

  6. 关于Java开发一职的经验

    本人为大四软件工程学生,由于准备不充分也没有前人指点,去年10月份才赶上秋招节奏,然后签下了一家比较起来还行的公司.所以不太期望大家有求职意愿但苦于不知作何准备,所以特列以下知识点检索供大家查阅.如果 ...

  7. LintCode——筛子求和

    描述:扔n个骰子,向上面的数字之和为 S .给定 Given n,请列出所有可能的 S 值及其相应的概率. 样例:给定n=1,返回 [ [1, 0.17], [2, 0.17], [3, 0.17], ...

  8. 机器学习初入门01-numpy的基础用法

    一.numpy基础结构 1. numpy.genformtxt('路径名', delimiter = '分割符', dytype = 读取方式如str ):读取一个文件,返回一个numpy.ndarr ...

  9. 链家鸟哥:从留级打架问题学生到PHP大神,他的人生驱动力竟然是?

    链家鸟哥:从留级打架问题学生到PHP大神,他的人生驱动力竟然是?| 二叉树短视频 http://mp.weixin.qq.com/s/D4l_zOpKDakptCM__4hLrQ 从问题劝退学生到高考 ...

  10. 配置tomcat虚拟路径

    这个问题其实很简单,首先找到你安装的tomcat的路径然后,在Tomcat6.0/conf/Catalina路径下创建localhost文件夹,如果有,就不用创建,然后在该文件夹下创建一个xml文件, ...