题目链接

这道题讲道理还是不错的,因为你需要不断挖掘其中的性质来帮助解题。可惜数据范围开在这里让考试时的我很慌,勉强也就写了$65$分就没了。回忆在考场上,思路是没有错的,就是发掘不够深入,思路还不够清晰。事实上考场上没有选择继续做这道题是对的,因为就算是我考后仔细分析之后,写完这道题仍然花了我不少时间。

我们可以循着思路一步步分析,一步步得到每一个性质。

题目中对其走过路径的字典序的比较提示我们按斜行分析。稍加思考我们就能得到一个明显的结论,就是对于某一个格子如果它是$1$,那它的右上角的那个格子就不能是$0$,这几乎就是题目条件的定义,因为有一条路径走到了这个格子,它就会在分叉的时候出问题。我们它这个性质总结一下就能得到我们需要的第一个结论:

1.对于每一个斜行,其$0/1$状态一定是存在一个分界点,使得其左下方都是$1$,其右上方都是$0$。

有以上的结论将大大减少每一个斜行的可行的$0/1$状态。我们接着思考,一对不合法的路径的出现,除了上述的情况,都可以归结为两条不同的路径以相同的$0/1$串走到了某一个格子,但是这个格子右边下边的两个格子的$0/1$是不同的,这同样会让矛盾出现。或许你会想这两条路径在$0/1$字典序出现分歧的时候并不一定在同一个格子里,但如果存在这种情况,那我们一定能找到前者所说的更加简单的情况。我们将形式地描述这个问题,我们称一个格子是“模糊”的,当且仅当存在两条不同的路径以相同的$0/1$串走到了这个格子。我们所发现的可以表述成:

2.如果某一个格子它左边上边的两个格子的$0/1$是相同的,或者它左边或上边有格子是模糊点,那这个格子就是模糊点;模糊点右边下边的两个格子的$0/1$必须相同。

这也是一个重要的结论,它为下一个结论的得到提供了一个有力的帮助。模糊点的传递性隐约让我们感觉到它们的排布不会错杂无序,事实上十分有规律。读者可以仔细推敲,利用归纳法简单证明以下结论:

3.去除第一行和第一列的格子后,每一条斜行最多只有一个格子是非模糊的,并且这个非模糊点一定在第二行或第二列。

这个性质令人惊讶,但它是真实的,并且不难证明。有了这个结论后,我们就可以有一个大致的想法,我们可以枚举整张图的模糊状态,状态数是$O(m)$的,因为斜行上一旦全是模糊点,接下来也一定都是模糊点。我们考虑对于一个给定的模糊状态,我们怎么去计算有多少$0/1$的填放方式满足整张图的模糊状态。假设我们枚举那个仅存的非模糊点最后出现在哪一个斜行,手模一下可以发现,为了保证这个非模糊点没有消失,前面的大多数斜行的$0/1$状态是唯一的,只有最开头的两斜行会有多种状态,并且为了让这个非模糊点在下一斜行中消失,这行和下一行的可行状态数也可以知道,那么算到这里方案数还是一个已知的常数。在非模糊点消失后,接下来每一斜行面临的决策都是一样的,对于后面的方案数只要快速幂即可。到这里为止,已经可以解决这道题了,利用此算法的复杂度是$O(mlogm)$。

讲到这里算法大致结束了。对于上述算法而言,我们枚举了非模糊点最后出现的位置然后算方案数,其算式的形式是相同的,我们可以把其中的式子化简一下,就能用等比数列求和直接算了,在此处当$n=m$的时候要求有$3$的逆元。所以,总复杂度为$O(logm)$。这道题的细节相当复杂,其中的有许多常数要手动算出来,也有一些角落需要特判,就算大致知道怎么做了之后实现起来也是不容易的。

这份代码是$O(mlogm)$的实现,写的时候也是有点逻辑顺序在里面的,总的来说是按照斜行的从上到下。可能其中有需要解释的地方,$C$函数用于求在$x + 1$斜行后全部都是模糊点的方案数的计算,one more case中是一个算非模糊点在第二列最后两个位置时特判,dd line是非模糊点在第$n$斜行的特判,last case是非模糊点在第二行最后两个位置时的特判。

#include <cstdio>
#include <algorithm> typedef long long LL; const int MOD = (int)1e9 + ; int n, m, ans, p2, p3; int Pow(int x, int b) {
int r = ;
for (; b; b >>= , x = (LL)x * x % MOD) if (b & ) r = (LL)r * x % MOD;
return r;
}
int C(int x) { // end by x, calc after
if (x >= m) return Pow(, n + m - x - );
if (x >= n) return (LL)Pow(, m - x) * p2 % MOD;
return (LL)Pow(, n - x) * p3 % MOD * p2 % MOD;
} int main() {
scanf("%d%d", &n, &m);
if (n > m) std::swap(n, m);
p2 = Pow(, n - );
p3 = Pow(, m - n);
if (n == ) {
printf("%d\n", Pow(, m));
return ;
}
if (n == ) {
printf("%lld\n", 4LL * Pow(, m - ) % MOD);
return ;
}
ans = (ans + 16LL * C()) % MOD; // on line 2
ans = (ans + ( + (n != ) + (m > )) * 4LL * C()) % MOD; // on line 3
for (int i = ; i < n; ++i) {
ans = (ans + 80LL * C(i + )) % MOD;
}
// one more case
if (n > ) {
if (n < m) ans = (ans + 32LL * C(n + )) % MOD;
else ans = (ans + 24LL * C(n + )) % MOD;
}
if (n < m) ans = (ans + 8LL * C(n + )) % MOD;
else ans = (ans + 6LL * C(n + )) % MOD; // dd line
if (n < m && n != ) ans = (ans + 32LL * C(n + )) % MOD;
for (int i = n + ; i < m; ++i) {
ans = (ans + 24LL * C(i + )) % MOD;
}
// last case
if (n > || m > ) {
if (n < m) ans = (ans + 18LL * C(m + )) % MOD;
else ans = (ans + 24LL * C(m + )) % MOD;
}
ans = (ans + 6LL * C(m + )) % MOD; printf("%d\n", ans);
return ;
}

这份代码是$O(logm)$的实现,其中把一些项合并过了,故而稍变简洁,但是无法从中得到具体的含义的。

#include <cstdio>
#include <algorithm>
using namespace std; typedef long long LL; const int MOD = (int)1e9 + ; int n, m, ans, p2, p3; int Pow(int x, int y) {
int r = , b = (y + MOD - ) % (MOD - );
for (; b; b >>= , x = (LL)x * x % MOD) if (b & ) r = (LL)r * x % MOD;
return r;
} int main() {
scanf("%d%d", &n, &m);
if (n > m) swap(n, m);
p2 = Pow(, n - );
p3 = Pow(, m - n);
if (n == ) ans = Pow(, m);
if (n == ) ans = 4LL * Pow(, m - ) % MOD;
if (n == ) ans = 112LL * p3 % MOD;
if (n > ) {
ans = (3LL * p2 + 21LL * Pow(, * n - ) % MOD * p3) % MOD;
if (n == m) ans = (ans + 27LL * p2) % MOD;
else ans = (ans + (24LL * p3 % MOD + ) * p2) % MOD;
ans = (ans + 80LL * p2 % MOD * Pow(, m - n - ) % MOD * (Pow(, n - ) - )) % MOD;
ans = (ans + 12LL * p2 % MOD * (Pow(, max(, m - n - )) - )) % MOD;
}
printf("%d\n", ans);
return ;
}

$\bigodot$总结:

对于这道题的我的做法,或许与大多数做法不一定相同,它并没有要求什么算法,甚至没有类可归,重要的是要细心耐心地思考与推导。

【NOIP 2018】填数游戏(思考与推导)的更多相关文章

  1. 【逆向笔记】2017年全国大学生信息安全竞赛 Reverse 填数游戏

    2017年全国大学生信息安全竞赛 Reverse 填数游戏 起因是吾爱破解大手发的解题思路,觉得题挺有意思的,就找来学习学习 这是i春秋的下载链接 http://static2.ichunqiu.co ...

  2. @NOIP2018 - D2T2@ 填数游戏

    目录 @题目描述@ @题解@ @代码@ @题目描述@ 小 D 特别喜欢玩游戏.这一天,他在玩一款填数游戏. 这个填数游戏的棋盘是一个 n×m 的矩形表格.玩家需要在表格的每个格子中填入一个数字(数字 ...

  3. [Noip2018]填数游戏

    传送门 Description 耳熟能详,就不多说了 Solution 对于一个不会推式子的蒟蒻,如何在考场优雅地通过此题 手玩样例,发现对于 \(n=1\) , \(ans=2^m\) .对于 \( ...

  4. NOIP2018 填数游戏 搜索、DP

    LOJ 感觉这个题十分好玩于是诈尸更博.一年之前的做题心得只有这道题还记得清楚-- 设输入为\(n,m\)时的答案为\(f(n,m)\),首先\(f(n,m)=f(m,n)\)所以接下来默认\(n \ ...

  5. luogu P5023 填数游戏

    luogu loj 被这道题送退役了 题是挺有趣的,然而可能讨论比较麻烦,肝了2h 又自闭了,鉴于CSP在即,就只能先写个打表题解了 下面令\(n<m\),首先\(n=1\)时答案为\(2^m\ ...

  6. 【题解】NOIP2018 填数游戏

    题目戳我 \(\text{Solution:}\) 题目标签是\(dp,\)但是纯暴力打表找规律可以有\(65\)分. 首先是对于\(O(2^{nm}*nm)\)的暴力搜索,显然都会. 考虑几条性质: ...

  7. 2018.10.14 NOIP训练 猜数游戏(决策单调性优化dp)

    传送门 一道神奇的dp题. 这题的决策单调性优化跟普通的不同. 首先发现这道题只跟r−lr-lr−l有关. 然后定义状态f[i][j]f[i][j]f[i][j]表示猜范围为[L,L+i−1][L,L ...

  8. JZOJ5965【NOIP2018提高组D2T2】填数游戏

    题目 作为NOIP2018的题目,我觉得不需要把题目贴出来了. 大意就是,在一个n∗mn*mn∗m的010101矩阵中,从左上角到右下角的路径中,对于任意的两条,上面的那条小于下面的那条.问满足这样的 ...

  9. NOIP2018 Day2T2 填数游戏

    下面先给出大家都用的打表大法: 首先我们可以发现 \(n \le 3\) 的情况有 \(65pts\),而 \(n\) 这么小,打一下表何乐而不为呢?于是我写了一个爆枚每个位置再 \(check\) ...

随机推荐

  1. 【Nodejs】Browsersync同步浏览器测试

    说明文档:http://www.browsersync.cn/docs/ 安装命令: ①全局安装 npm install -g browser-sync ②局部/本地安装 npm install br ...

  2. maven使用出现的错误

    修改mvn archetype:create  改成mvn archetype:generate 刚开始学习用Maven, 装好了以后生成一个新的project mvnarchetype:genera ...

  3. 同步IO和异步IO的区别

    首先一个IO操作其实分成了两个步骤:发起IO请求和实际的IO操作,同步IO和异步IO的区别就在于第二个步骤是否阻塞,如果实际的IO读写阻塞请求进程,那么就是同步IO,因此阻塞IO.非阻塞IO.IO服用 ...

  4. Android开发——进程间通信之Bundle和文件

    0.  前言 不论是Android还是其他操作系统,都会有自己的IPC机制,所谓IPC(Inter-Process Communication)即进程间通信.首先线程和进程是很不同的概念,线程是CPU ...

  5. flask 与 vue.js 2.0 实现 todo list

    实现了后端与前端分离,后端提供 RESTful api. 后端 flask 与前端 vue 的数据传输都是 json. 本文使用 vue.js 2.0 对前一个例子:flask, SQLAlchemy ...

  6. SpringBoot日记——Redis整合

    上一篇文章,简单记录了一下缓存的使用方法,这篇文章将把我们熟悉的redis整合进来. 那么如何去整合呢?首先需要下载和安装,为了使用方便,也可以做环境变量的配置. 下载和安装的方法,之前有介绍,在do ...

  7. Jenkins分布式构建

    Jenkins分布式构建 有时,如果有一个实例,它是一个更大,更重的项目,需要定期编译生成在许多计算机上.并运行所有这些构建了中央台机器上可能不是最好的选择.在这种情况下,人们可以配置其他Jenkin ...

  8. openstack删除僵尸卷

    问题描述: 最近在清理openstack环境,在删除cinder云硬盘时,一直发现有两个卷在删除中. 解决方法如下: 首先我们去cinder的数据库中找到这个卷,命令为: MariaDB [(none ...

  9. hadoop-lzo 安装配置

           在hive中要想使用lzo的格式,需要配置安装好lzo工具并且在hadoop的core-site.xml与mapred-site.xml中配置相应的配置 一.编译安装lzo与lzop 在 ...

  10. winform只允许一个应用程序运行

    使用互斥体Mutex类型 using System.Threading; //声明互斥体 Mutex mutex = new Mutex(false, "ThisShouldOnlyRunO ...