BZOJ2299 HAOI2011向量(数论)
设最后的组成为x=x0a+x1b,y=y0a+y1b。那么容易发现x0和y0奇偶性相同、x1和y1奇偶性相同。于是考虑奇偶两种情况,问题就变为是否存在x和y使ax+by=c,那么其充要条件是gcd(a,b)|c。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
bool check(int a,int b,long long x,long long y)
{
if (x&) return ;
if (y&) return ;
x>>=,y>>=;
int n=gcd(a,b);
return x%n==&&y%n==;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2299.in","r",stdin);
freopen("bzoj2299.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
int T=read();
while (T--)
{
int a=read(),b=read();long long x=read(),y=read();
if (check(a,b,x,y)||check(a,b,x-a,y-b)||check(a,b,x-b,y-a)||check(a,b,x-a-b,y-a-b)) printf("Y\n");
else printf("N\n");
}
return ;
}
BZOJ2299 HAOI2011向量(数论)的更多相关文章
- BZOJ2299 [HAOI2011]向量 【裴蜀定理】
题目链接 BZOJ2299 题解 题意就是给我们四个方向的向量\((a,b),(b,a),(-a,b),(b,-a)\),求能否凑出\((x,y)\) 显然我们就可以得到一对四元方程组,用裴蜀定理判断 ...
- BZOJ2299: [HAOI2011]向量
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2299 题解:乱搞就可以了... 不妨认为有用的只有(a,b)(a,-b)(b,a)(b,-a) ...
- 【BZOJ2299】[HAOI2011]向量(数论)
[BZOJ2299][HAOI2011]向量(数论) 题面 BZOJ 洛谷 题解 首先如果我们的向量的系数假装可以是负数,那么不难发现真正有用的向量只有\(4\)个,我们把它列出来.\((a,b)(a ...
- 【BZOJ-2299】向量 裴蜀定理 + 最大公约数
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1118 Solved: 488[Submit][Status] ...
- 【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)
2299: [HAOI2011]向量 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1255 Solved: 575 Description 给你一 ...
- P2520 [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- [HAOI2011]向量
题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量 ...
- luogu P2520 [HAOI2011]向量
传送门 一堆人说数论只会gcd,我连gcd都不会,菜死算了qwq Orzyyb 这题欺负我数学不好qwq 首先可以发现实际上有如下操作:x或y±2a,x或y±2b,x+a y+b,x+b y+a(后面 ...
- 【[HAOI2011]向量】
靠瞎猜的数学题 首先我们先对这些向量进行一顿组合,会发现\((a,b)(a,-b)\)可以组合成\((2a,0)\),\((b,-a)(b,a)\)可以组合成\((2b,0)\),同理\((0,2a) ...
随机推荐
- Android处理ListView中的Item中的Button按钮不能点击的问题
问题描述:ListView列表中的Button按钮按钮不能点击 解决办法:在ListView中的Item项的布局文件中加上:android:descendantFocusability="b ...
- kettle学习笔记(八)——kettle查询步骤与连接步骤
一.概述 查询步骤: 用来查询数据源里的数据并合并到主数据流中 . 连接步骤: 结果集通过关键字进行连接 .(与前面的UNION不同) 二.查询步骤 1.流查询 流查询示例:(注意上文中的流查询的限制 ...
- 20155217《网络对抗》Exp08 Web基础
20155217<网络对抗>Exp08 Web基础 实践内容 Web前端:HTML基础 Web前端:javascipt基础 Web后端:MySQL基础 Web后端:PHP基础 SQL注入 ...
- WPF之Manipulation
原文:WPF之Manipulation 需求:现,在窗口下有一个StackPanel控件. 1.可以拖动. 2.可以展开及收缩(不仅仅可以拖动还可以点击) 3.窗口向坐标轴一样分四个象限,在不同的区域 ...
- Windows下TeX Live + Sublime Text 3 + Sumatra PDF配置
本文写给我的师弟们,如何自己动手配置LaTeX环境(通过LeX Live + Sublime Text 3 + Sumatra PDF). 1.TeX Live 配置 首先从TeX Live 下载IS ...
- PostgreSQL安装和配置---Ubuntu
PostgreSQL安装和配置---Ubuntu
- Flask学习-Flask app接受第一个HTTP请求
一.__call__() 在Flask app启动后,一旦uwsgi收到来自web server的请求,就会调用后端app,其实此时就是调用app的__call__(environ,start_res ...
- Java开源博客My-Blog之docker容器组件化修改
前言 5月13号上线了自己的个人博客,<Docker+SpringBoot+Mybatis+thymeleaf的Java博客系统开源啦>,紧接着也在github上开源了博客的代码,到现在为 ...
- .Net Core 分布式微服务框架介绍 - Jimu
系列文章 .Net Core 分布式微服务框架介绍 - Jimu .Net Core 分布式微服务框架 - Jimu 添加 Swagger 支持 一.前言 近些年一直浸淫在 .Net 平台做企业应用开 ...
- 阿里云ECS 固定带宽变为按量付费的方式
阿里云ECS 固定带宽变为按量付费的方式 阿里云控制台 2.升降配置-降低配置-降低至最低配置 3.为按量带宽设置一个峰值,例如100M. 4.过几分钟,就自动变为按量付费的带宽了.