Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1930  Solved: 823
[Submit][Status][Discuss]

Description

Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务。于是,FJ必须为此向电信公司支付一定的费用。 FJ的农场周围分布着N(1 <= N <= 1,000)根按1..N顺次编号的废弃的电话线杆,任意两根电话线杆间都没有电话线相连。一共P(1 <= P <= 10,000)对电话线杆间可以拉电话线,其余的那些由于隔得太远而无法被连接。 第i对电话线杆的两个端点分别为A_i、B_i,它们间的距离为 L_i (1 <= L_i <= 1,000,000)。数据中保证每对{A_i,B_i}最多只出现1次。编号为1的电话线杆已经接入了全国的电话网络,整个农场的电话线全都连到了编号为N的电话线杆上。也就是说,FJ的任务仅仅是找一条将1号和N号电话线杆连起来的路径,其余的电话线杆并不一定要连入电话网络。 经过谈判,电信公司最终同意免费为FJ连结K(0 <= K < N)对由FJ指定的电话线杆。对于此外的那些电话线,FJ需要为它们付的费用,等于其中最长的电话线的长度(每根电话线仅连结一对电话线杆)。如果需要连结的电话线杆不超过 K对,那么FJ的总支出为0。 请你计算一下,FJ最少需要在电话线上花多少钱。

Input

* 第1行: 3个用空格隔开的整数:N,P,以及K

* 第2..P+1行: 第i+1行为3个用空格隔开的整数:A_i,B_i,L_i

Output

* 第1行: 输出1个整数,为FJ在这项工程上的最小支出。如果任务不可能完成, 输出-1

Sample Input

5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

输入说明:

一共有5根废弃的电话线杆。电话线杆1不能直接与电话线杆4、5相连。电话
线杆5不能直接与电话线杆1、3相连。其余所有电话线杆间均可拉电话线。电信
公司可以免费为FJ连结一对电话线杆。

Sample Output

4

输出说明:

FJ选择如下的连结方案:1->3;3->2;2->5,这3对电话线杆间需要的
电话线的长度分别为4、3、9。FJ让电信公司提供那条长度为9的电话线,于是,
他所需要购买的电话线的最大长度为4。

HINT

 

Source

Silver

二分当前的最小代价,如果 u 连出去的一条边权比代价高,就考虑公司报销。。

 #include <cstdio>
#include <queue> #define min(a,b) (a<b?a:b) inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int M();
const int N();
int n,k,p;
int head[N],sumedge;
struct Edge {
int v,next,w;
Edge(int v=,int next=,int w=):v(v),next(next),w(w){}
}edge[M<<];
inline void ins(int u,int v,int w)
{
edge[++sumedge]=Edge(v,head[u],w),head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v],w),head[v]=sumedge;
} bool inq[N];
int dis[N];
std::queue<int>que;
int L,R,Mid,ans=-;
inline bool check(int lim)
{
for(int i=; i<=n; ++i)
dis[i]=0x3f3f3f3f,inq[i]=;
for(; !que.empty(); ) que.pop();
int cnt=; que.push(); dis[]=;
for(int u,v; !que.empty(); )
{
u=que.front(); que.pop(); inq[u]=;
for(int i=head[u]; i; i=edge[i].next)
{
v=edge[i].v;
cnt=(edge[i].w>lim);
if(dis[v]>dis[u]+cnt)
{
dis[v]=dis[u]+cnt;
if(!inq[v]) inq[v]=,que.push(v);
}
}
}
return dis[n]<=k;
} int Presist()
{
read(n),read(p),read(k);
for(int u,v,w,i=; i<=p; ++i)
read(u),read(v),read(w),ins(u,v,w),R=R>w?R:w;;
for(; L<=R; )
{
Mid=L+R>>;
if(check(Mid))
{
ans=Mid;
R=Mid-;
}
else L=Mid+;
}
printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

BZOJ——1614: [Usaco2007 Jan]Telephone Lines架设电话线的更多相关文章

  1. BZOJ 1614: [Usaco2007 Jan]Telephone Lines架设电话线

    题目 1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farm ...

  2. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线:spfa + 二分【路径中最大边长最小】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1614 题意: 给你一个无向图,n个点,m条边. 你需要找出一条从1到n的路径,使得这条路径 ...

  3. bzoj 1614: [Usaco2007 Jan]Telephone Lines架设电话线【二分+spfa】

    二分答案,然后把边权大于二分值的的边赋值为1,其他边赋值为0,然后跑spfa最短路看是否满足小于等于k条边在最短路上 #include<iostream> #include<cstd ...

  4. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线 (二分+最短路)

    题意: 给一个2e4带正边权的图,可以免费k个边,一条路径的花费为路径上边权最大值,问你1到n的最小花费 思路: 对于一个x,我们如果将大于等于x的边权全部免费,那么至少需要免费的边的数量就是 “设大 ...

  5. BZOJ1614: [Usaco2007 Jan]Telephone Lines架设电话线

    1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 892  Solved: ...

  6. [Usaco2007 Jan]Telephone Lines架设电话线(最短路,二分)

    [Usaco2007 Jan]Telephone Lines架设电话线 Description FarmerJohn打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向 ...

  7. [Usaco2007 Jan]Telephone Lines架设电话线[二分答案+最短路思想]

    Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...

  8. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线 二分+SPFA

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N <= 1 ...

  9. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用.     FJ的农场周围分布着N(1 <= N < ...

随机推荐

  1. Flask——蓝图

    蓝图介绍 一个项目中,有不同的模块,但是只有一个入口,程序入口可以随便取名,一般叫做,app.py或者manage.py.当我们写一个程序,当然可以在一个文件中写完,但是有一定规模的项目,我们肯定不会 ...

  2. x220 OS X 10.10.4安装

    变色龙安装过程: 1.使用磁盘助手将按照盘写入独立的磁盘分区(AF格式,就是Apple的HPS格式): 2.安装启动时,用-v -f -x参数,分别为显示信息.重新build系统驱动.安全模式: 3. ...

  3. 几种常用库在CentOS下的编译

    1操作环境 通过命令查看操作系统版本信息: [root@localhost ~]# cat /proc/version Linux version 3.10.0-327.el7.x86_64 (bui ...

  4. [LUOGU] P1024 选课

    题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分,每门课有一 ...

  5. [LUOGU] 1717 钓鱼

    题目描述 话说发源于小朋友精心设计的游戏被电脑组的童鞋们藐杀之后非常不爽,为了表示安慰和鼓励,VIP999决定请他吃一次"年年大丰收",为了表示诚意,他还决定亲自去钓鱼,但是,因为 ...

  6. MySQL中的字符串

    MySQL的字符串是从1开始编号的,这与计算机编程语言有所不同,在MySQL中1代表第一个字符,-1代表最后一个字符,以此类推. MySQL中百分号“%”代表的是任意个字符,下划线“_”代表的是任意一 ...

  7. 《linux设备驱动开发详解》笔记——11内存与IO访问

    内存访问与映射是linux驱动常见操作,操作硬件时离不开内存的映射,本章比较重要. 11.1 CPU与内存.I/O 目前的嵌入式处理器,都不提供专门的I/O空间,而仅存在内存空间:各种外设寄存器都直接 ...

  8. MySQL 之视图、 触发器、事务、存储过程、内置函数、流程控制、索引

    本文内容: 视图 触发器 事务 存储过程 内置函数 流程控制 索引 ------------------------------------------------------------------ ...

  9. Python GUI界面开发环境配置:Pycharm+PyQt5

    通过DoS命令行执行如下命令,可能需要管理员权限. 检查Python版本:python 更新pip版本:python -m pip install --upgrade pip 安装PyQt5: pip ...

  10. ajax dataType

    dataType 类型:String 预期服务器返回的数据类型.如果不指定,jQuery 将自动根据 HTTP 包 MIME 信息来智能判断,比如 XML MIME 类型就被识别为 XML.在 1.4 ...