Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 1930  Solved: 823
[Submit][Status][Discuss]

Description

Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务。于是,FJ必须为此向电信公司支付一定的费用。 FJ的农场周围分布着N(1 <= N <= 1,000)根按1..N顺次编号的废弃的电话线杆,任意两根电话线杆间都没有电话线相连。一共P(1 <= P <= 10,000)对电话线杆间可以拉电话线,其余的那些由于隔得太远而无法被连接。 第i对电话线杆的两个端点分别为A_i、B_i,它们间的距离为 L_i (1 <= L_i <= 1,000,000)。数据中保证每对{A_i,B_i}最多只出现1次。编号为1的电话线杆已经接入了全国的电话网络,整个农场的电话线全都连到了编号为N的电话线杆上。也就是说,FJ的任务仅仅是找一条将1号和N号电话线杆连起来的路径,其余的电话线杆并不一定要连入电话网络。 经过谈判,电信公司最终同意免费为FJ连结K(0 <= K < N)对由FJ指定的电话线杆。对于此外的那些电话线,FJ需要为它们付的费用,等于其中最长的电话线的长度(每根电话线仅连结一对电话线杆)。如果需要连结的电话线杆不超过 K对,那么FJ的总支出为0。 请你计算一下,FJ最少需要在电话线上花多少钱。

Input

* 第1行: 3个用空格隔开的整数:N,P,以及K

* 第2..P+1行: 第i+1行为3个用空格隔开的整数:A_i,B_i,L_i

Output

* 第1行: 输出1个整数,为FJ在这项工程上的最小支出。如果任务不可能完成, 输出-1

Sample Input

5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

输入说明:

一共有5根废弃的电话线杆。电话线杆1不能直接与电话线杆4、5相连。电话
线杆5不能直接与电话线杆1、3相连。其余所有电话线杆间均可拉电话线。电信
公司可以免费为FJ连结一对电话线杆。

Sample Output

4

输出说明:

FJ选择如下的连结方案:1->3;3->2;2->5,这3对电话线杆间需要的
电话线的长度分别为4、3、9。FJ让电信公司提供那条长度为9的电话线,于是,
他所需要购买的电话线的最大长度为4。

HINT

 

Source

Silver

二分当前的最小代价,如果 u 连出去的一条边权比代价高,就考虑公司报销。。

 #include <cstdio>
#include <queue> #define min(a,b) (a<b?a:b) inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
}
const int M();
const int N();
int n,k,p;
int head[N],sumedge;
struct Edge {
int v,next,w;
Edge(int v=,int next=,int w=):v(v),next(next),w(w){}
}edge[M<<];
inline void ins(int u,int v,int w)
{
edge[++sumedge]=Edge(v,head[u],w),head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v],w),head[v]=sumedge;
} bool inq[N];
int dis[N];
std::queue<int>que;
int L,R,Mid,ans=-;
inline bool check(int lim)
{
for(int i=; i<=n; ++i)
dis[i]=0x3f3f3f3f,inq[i]=;
for(; !que.empty(); ) que.pop();
int cnt=; que.push(); dis[]=;
for(int u,v; !que.empty(); )
{
u=que.front(); que.pop(); inq[u]=;
for(int i=head[u]; i; i=edge[i].next)
{
v=edge[i].v;
cnt=(edge[i].w>lim);
if(dis[v]>dis[u]+cnt)
{
dis[v]=dis[u]+cnt;
if(!inq[v]) inq[v]=,que.push(v);
}
}
}
return dis[n]<=k;
} int Presist()
{
read(n),read(p),read(k);
for(int u,v,w,i=; i<=p; ++i)
read(u),read(v),read(w),ins(u,v,w),R=R>w?R:w;;
for(; L<=R; )
{
Mid=L+R>>;
if(check(Mid))
{
ans=Mid;
R=Mid-;
}
else L=Mid+;
}
printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

BZOJ——1614: [Usaco2007 Jan]Telephone Lines架设电话线的更多相关文章

  1. BZOJ 1614: [Usaco2007 Jan]Telephone Lines架设电话线

    题目 1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farm ...

  2. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线:spfa + 二分【路径中最大边长最小】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1614 题意: 给你一个无向图,n个点,m条边. 你需要找出一条从1到n的路径,使得这条路径 ...

  3. bzoj 1614: [Usaco2007 Jan]Telephone Lines架设电话线【二分+spfa】

    二分答案,然后把边权大于二分值的的边赋值为1,其他边赋值为0,然后跑spfa最短路看是否满足小于等于k条边在最短路上 #include<iostream> #include<cstd ...

  4. BZOJ 1614 [Usaco2007 Jan]Telephone Lines架设电话线 (二分+最短路)

    题意: 给一个2e4带正边权的图,可以免费k个边,一条路径的花费为路径上边权最大值,问你1到n的最小花费 思路: 对于一个x,我们如果将大于等于x的边权全部免费,那么至少需要免费的边的数量就是 “设大 ...

  5. BZOJ1614: [Usaco2007 Jan]Telephone Lines架设电话线

    1614: [Usaco2007 Jan]Telephone Lines架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 892  Solved: ...

  6. [Usaco2007 Jan]Telephone Lines架设电话线(最短路,二分)

    [Usaco2007 Jan]Telephone Lines架设电话线 Description FarmerJohn打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向 ...

  7. [Usaco2007 Jan]Telephone Lines架设电话线[二分答案+最短路思想]

    Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...

  8. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线 二分+SPFA

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N <= 1 ...

  9. 【bzoj1614】[Usaco2007 Jan]Telephone Lines架设电话线

    题目描述 Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用.     FJ的农场周围分布着N(1 <= N < ...

随机推荐

  1. EMVS: Event-based Multi-View Stereo 阅读笔记

    0. 摘要 EMVS目的:从已知轨迹的event相机,估计半稠密的3D结构 传统的MVS算法目的:从已知视点的图片集,去估计场景的稠密3D结构. EMVS2个固有属性: (1)   当传感器发生相对运 ...

  2. _IO_FILE

    hctf2017的babyprintf解法是house of orange,深入学习了一下,牵扯出许多知识,这里先进行第一步:_IO_FILE结构 0x00 _IO_FILE glibc-2.2.1\ ...

  3. javaEE(11)_事务处理

    一.事务的概念 •事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. •例如:A——B转帐,对应于如下两条sql语句 update from account set mon ...

  4. ios之UITabelViewCell的自定义(xib实现)

    通过继承UITableViewCell来自定义cell 1.创建一个空的项目.命名: 2.创建一个UITableViewController 并且同时创建xib: 3.设置AppDelegate.m中 ...

  5. [LUOGU] P1048 采药

    题目描述 辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的医师为师.医师为了判断他的资质,给他出了一个难题.医师把他带到一个到处都是草药的山洞里对他说:" ...

  6. docker系列之安装配置-2

    1.docker安装 1.CentOS Docker 安装 Docker支持以下的CentOS版本: CentOS 7 (64-bit) CentOS 6.5 (64-bit) 或更高的版本 目前,C ...

  7. python--FTP 上传视频示例

    # 服务端 import json import socket import struct server = socket.socket() server.bind(('127.0.0.1',8001 ...

  8. 牛客网暑期ACM多校训练营(第四场)G Maximum Mode(思维)

    链接: https://www.nowcoder.com/login?callBack=%2Facm%2Fcontest%2F142%2FG 题意: 给定n个数, 要求删去恰好m个数后的最大总数是多少 ...

  9. 封装微信分享到朋友/朋友圈js

    在页面引入: <script src="/static/lib/jquery-2.2.2.min.js"></script><script src=& ...

  10. Python小课题练习作业

    作业一: 利用*字典*输出目录,可以选择目录进入,可以回退.退出! #conding:utf8 menu = {'北京':{'昌平':{'沙河':{'昌平妇幼',}},'海淀':{'海淀一区':{'海 ...