先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html

http://www.cppblog.com/acronix/archive/2010/08/23/124470.aspx?opt=admin

http://www.cnblogs.com/vongang/archive/2012/04/01/2429015.html

http://www.cnblogs.com/yan-boy/archive/2012/11/29/2795294.html

233 Matrix

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 257    Accepted Submission(s): 165

Problem Description
   In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a0,1 = 233,a0,2 = 2333,a0,3 = 23333...) Besides, in 233 matrix, we got ai,j = ai-1,j +ai,j-1( i,j ≠ 0). Now you have known a1,0,a2,0,...,an,0, could you tell me an,m in the 233 matrix?
 
Input
   There are multiple test cases. Please process till EOF.
   For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a1,0,a2,0,...,an,0(0 ≤ ai,0 < 231).
 
Output
   For each case, output an,m mod 10000007.
 
Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
 
Sample Output
234
2799
72937

Hint

 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  5017 5016 5014 5013 5012 

题解1:http://www.cnblogs.com/whatbeg/p/3971994.html

题解2:http://blog.csdn.net/u013368721/article/details/39271565

题目分析:矩阵快速幂,构建一个如下的矩阵即可:

  1. n+2行的矩阵
  2. --                      --   --  --
  3. | 1  1  1  1  1  1  1  0 |   | a1 |
  4. | 0  1  1  1  1  1  1  0 |   | a2 |
  5. | 0  0  1  1  1  1  1  0 |   | a3 |
  6. | 0  0  0  1  1  1  1  0 |   | a4 |
  7. | 0  0  0  0  1  1  1  0 | * | a5 |
  8. | 0  0  0  0  0  1  1  0 |   | an |
  9. |  - - - - - - - - - - - |   |    |
  10. | 0  0  0  0  0  0 10  1 |   | 233|
  11. | 0  0  0  0  0  0  0  1 |   | 3  |
  12. --                      --   --  --
 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<string> #define N 15
#define M 15
#define mod 10000007
#define p 10000007
#define mod2 100000000
#define ll long long
#define LL long long
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; ll nn,m;
ll n;
ll x[];
//ll ans; struct Mat
{
ll mat[N][N];
}; Mat e,f,g;
Mat operator * (Mat a,Mat b)
{
Mat c;
memset(c.mat,,sizeof(c.mat));
ll i,j,k;
for(k = ; k < n ; k++)
{
for(i = ; i < n ;i++)
{
if(a.mat[i][k]==) continue;//优化
for(j = ;j < n ;j++)
{
if(b.mat[k][j]==) continue;//优化
c.mat[i][j] = (c.mat[i][j]+(a.mat[i][k]*b.mat[k][j])%mod)%mod;
}
}
}
return c;
}
Mat operator ^(Mat a,ll k)
{
Mat c;
ll i,j;
for(i = ; i < n ;i++)
for(j = ; j < n ;j++)
c.mat[i][j] = (i==j);
for(; k ;k >>= )
{
if(k&) c = c*a;
a = a*a;
}
return c;
} void ini()
{
ll i,j;
for(i=;i<=nn;i++){
scanf("%I64d\n",&x[i]);
}
memset(e.mat,,sizeof(e.mat));
memset(f.mat,,sizeof(f.mat));
e.mat[][]=;
e.mat[][]=;
e.mat[][]=+x[];
for(i=;i<=nn;i++){
e.mat[][i+]=e.mat[][i]+x[i];
}
for(j=;j<nn+;j++){
if(j!=){
f.mat[][j]=;
}
f.mat[][j]=;
}
for(i=;i<nn+;i++){
for(j=i;j<nn+;j++){
f.mat[i][j]=;
}
}
n=nn+;
} void solve()
{
if(m>){
g= e* (f^(m-) );
}
else{
g.mat[][nn+]=e.mat[][nn+];
}
} void out()
{
printf("%I64d\n",g.mat[][nn+]);
} int main()
{
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout);
//scanf("%d",&T);
//for(int cnt=1;cnt<=T;cnt++)
// while(T--)
while(scanf("%I64d%I64d",&nn,&m)!=EOF)
{
ini();
solve();
out();
} return ;
}

HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂的更多相关文章

  1. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 矩阵快速幂

    Bob has a not even coin, every time he tosses the coin, the probability that the coin's front face u ...

  2. hdu 1757 A Simple Math Problem (矩阵快速幂,简单)

    题目 也是和LightOJ 1096 和LightOJ 1065 差不多的简单题目. #include<stdio.h> #include<string.h> #include ...

  3. 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)

    题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...

  4. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. HDU 1757 A Simple Math Problem(矩阵快速幂)

    题目链接 题意 :给你m和k, 让你求f(k)%m.如果k<10,f(k) = k,否则 f(k) = a0 * f(k-1) + a1 * f(k-2) + a2 * f(k-3) + …… ...

  6. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. 广工十四届校赛 count 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意:求,直接矩阵快速幂得f(n)即可 构造矩阵如下: n^3是肯定得变换的,用二项式展开来一点 ...

  8. hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!

    http://acm.hdu.edu.cn/showproblem.php?pid=2604 这题居然O(9 * L)的dp过不了,TLE,  更重要的是找出规律后,O(n)递推也过不了,TLE,一定 ...

  9. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

随机推荐

  1. 如何启动Intel VT-x

    如何启动Intel VT-x 5 在64bit win7系统下安装了Vmware10,然后安装64位的UbuntuKylin 14.04,想要打开UbuntuKylin,弹出如下对话框: 请问该如何启 ...

  2. LeetCode || 大杂烩w

    454. 4Sum II 题意:给四个数组,每个数组内取一个数使得四个数和为0,问有多少种取法 思路:枚举为On4,考虑两个数组,On2枚举所有可能的和,将和的出现次数存入map中,On2枚举另两个数 ...

  3. Vue的安装并在WebStorm中运行

    一.Vue的安装需要两个支持分别为:nodejs.npm Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js 使用了一个事件驱动.非阻塞式 I/O ...

  4. DP玄学优化——斜率优化

    --以此博客来悼念我在\(QBXT\)懵逼的时光 \(rqy\; tql\) (日常%\(rqy\)) 概念及用途 斜率优化是\(DP\)的一种较为常用的优化(据说在高中课本里稍有提及),它可以用于优 ...

  5. shell脚本,按单词出现频率降序排序。

    [root@localhost oldboy]# cat file the squid project provides a number of resources toassist users de ...

  6. 使用xib开发界面

    使用xib开发界面 2015-02-02 10:03 编辑: suiling 分类:iOS开发 来源:jymn_chen‘s blog   纯代码写界面有时候会降低开发效率,对于一些通用简单的界面,例 ...

  7. BZOJ4513 SDOI2016 储能表 记忆化搜索(动态规划)

    题意: 题面中文,不予翻译:SDOI2016储能表 分析: 据说有大爷用一些奇怪的方法切掉了这道题%%%%% 这里用的是大众方法——动态规划. 其实这是一道类似于二进制数位dp的动态规划题,(但是实际 ...

  8. bzoj5183 [Baltic2016]Park

    题目描述: bz luogu 题解: 把坐标系看反了持续$WA$系列. 对偶图+并查集维护. 先处理出树对树.树对墙的空隙,然后把人和空隙按从小到大排序. 用并查集维护四面墙之间是否能互相隔断. 代码 ...

  9. 《嵌入式linux应用程序开发标准教程》笔记——6.文件IO编程

    前段时间看APUE,确实比较详细,不过过于详细了,当成工具书倒是比较合适,还是读一读这种培训机构的书籍,进度会比较快,遇到问题时再回去翻翻APUE,这样的效率可能更高一些. <嵌入式linux应 ...

  10. SpringMVC里静态网页不能加载到.js .css文件的问题

    在写SpringMVC项目时候,写的js css文件打不开,网上查了一下,解决办法: 在web.xml里面: <servlet> <servlet-name>dispatche ...