先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html

http://www.cppblog.com/acronix/archive/2010/08/23/124470.aspx?opt=admin

http://www.cnblogs.com/vongang/archive/2012/04/01/2429015.html

http://www.cnblogs.com/yan-boy/archive/2012/11/29/2795294.html

233 Matrix

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 257    Accepted Submission(s): 165

Problem Description
   In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233333 ... in the same meaning. And here is the question: Suppose we have a matrix called 233 matrix. In the first line, it would be 233, 2333, 23333... (it means a0,1 = 233,a0,2 = 2333,a0,3 = 23333...) Besides, in 233 matrix, we got ai,j = ai-1,j +ai,j-1( i,j ≠ 0). Now you have known a1,0,a2,0,...,an,0, could you tell me an,m in the 233 matrix?
 
Input
   There are multiple test cases. Please process till EOF.
   For each case, the first line contains two postive integers n,m(n ≤ 10,m ≤ 109). The second line contains n integers, a1,0,a2,0,...,an,0(0 ≤ ai,0 < 231).
 
Output
   For each case, output an,m mod 10000007.
 
Sample Input
1 1
1
2 2
0 0
3 7
23 47 16
 
Sample Output
234
2799
72937

Hint

 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:  5017 5016 5014 5013 5012 

题解1:http://www.cnblogs.com/whatbeg/p/3971994.html

题解2:http://blog.csdn.net/u013368721/article/details/39271565

题目分析:矩阵快速幂,构建一个如下的矩阵即可:

  1. n+2行的矩阵
  2. --                      --   --  --
  3. | 1  1  1  1  1  1  1  0 |   | a1 |
  4. | 0  1  1  1  1  1  1  0 |   | a2 |
  5. | 0  0  1  1  1  1  1  0 |   | a3 |
  6. | 0  0  0  1  1  1  1  0 |   | a4 |
  7. | 0  0  0  0  1  1  1  0 | * | a5 |
  8. | 0  0  0  0  0  1  1  0 |   | an |
  9. |  - - - - - - - - - - - |   |    |
  10. | 0  0  0  0  0  0 10  1 |   | 233|
  11. | 0  0  0  0  0  0  0  1 |   | 3  |
  12. --                      --   --  --
 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map>
#include<string> #define N 15
#define M 15
#define mod 10000007
#define p 10000007
#define mod2 100000000
#define ll long long
#define LL long long
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; ll nn,m;
ll n;
ll x[];
//ll ans; struct Mat
{
ll mat[N][N];
}; Mat e,f,g;
Mat operator * (Mat a,Mat b)
{
Mat c;
memset(c.mat,,sizeof(c.mat));
ll i,j,k;
for(k = ; k < n ; k++)
{
for(i = ; i < n ;i++)
{
if(a.mat[i][k]==) continue;//优化
for(j = ;j < n ;j++)
{
if(b.mat[k][j]==) continue;//优化
c.mat[i][j] = (c.mat[i][j]+(a.mat[i][k]*b.mat[k][j])%mod)%mod;
}
}
}
return c;
}
Mat operator ^(Mat a,ll k)
{
Mat c;
ll i,j;
for(i = ; i < n ;i++)
for(j = ; j < n ;j++)
c.mat[i][j] = (i==j);
for(; k ;k >>= )
{
if(k&) c = c*a;
a = a*a;
}
return c;
} void ini()
{
ll i,j;
for(i=;i<=nn;i++){
scanf("%I64d\n",&x[i]);
}
memset(e.mat,,sizeof(e.mat));
memset(f.mat,,sizeof(f.mat));
e.mat[][]=;
e.mat[][]=;
e.mat[][]=+x[];
for(i=;i<=nn;i++){
e.mat[][i+]=e.mat[][i]+x[i];
}
for(j=;j<nn+;j++){
if(j!=){
f.mat[][j]=;
}
f.mat[][j]=;
}
for(i=;i<nn+;i++){
for(j=i;j<nn+;j++){
f.mat[i][j]=;
}
}
n=nn+;
} void solve()
{
if(m>){
g= e* (f^(m-) );
}
else{
g.mat[][nn+]=e.mat[][nn+];
}
} void out()
{
printf("%I64d\n",g.mat[][nn+]);
} int main()
{
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout);
//scanf("%d",&T);
//for(int cnt=1;cnt<=T;cnt++)
// while(T--)
while(scanf("%I64d%I64d",&nn,&m)!=EOF)
{
ini();
solve();
out();
} return ;
}

HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂的更多相关文章

  1. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 矩阵快速幂

    Bob has a not even coin, every time he tosses the coin, the probability that the coin's front face u ...

  2. hdu 1757 A Simple Math Problem (矩阵快速幂,简单)

    题目 也是和LightOJ 1096 和LightOJ 1065 差不多的简单题目. #include<stdio.h> #include<string.h> #include ...

  3. 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)

    题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...

  4. HDU - 5015 233 Matrix (矩阵快速幂)

    In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...

  5. HDU 1757 A Simple Math Problem(矩阵快速幂)

    题目链接 题意 :给你m和k, 让你求f(k)%m.如果k<10,f(k) = k,否则 f(k) = a0 * f(k-1) + a1 * f(k-2) + a2 * f(k-3) + …… ...

  6. HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. 广工十四届校赛 count 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意:求,直接矩阵快速幂得f(n)即可 构造矩阵如下: n^3是肯定得变换的,用二项式展开来一点 ...

  8. hdu 2604 Queuing dp找规律 然后矩阵快速幂。坑!!

    http://acm.hdu.edu.cn/showproblem.php?pid=2604 这题居然O(9 * L)的dp过不了,TLE,  更重要的是找出规律后,O(n)递推也过不了,TLE,一定 ...

  9. POJ 3233 Matrix Power Series (矩阵快速幂+二分求解)

    题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+ ...

随机推荐

  1. UVA Live 3713 Astronauts (2-SAT)

    用布尔变量表示状态,把限制条件转化为XνY的形式以后跑2SAT,根据变量取值输出方案. #include<bits/stdc++.h> using namespace std; ; #de ...

  2. 上下文 xx

    上下文,就是指在程序中的某个位置,可以访问到的所有资源的总和. 具体说来,在程序中资源可能是一个变量.一个常量.一个类的引用等等.

  3. python 基础之运算符

    运算符 a=10 ,b=20 运算符 描述 实例 + 加 - 两个对象相加 a + b 输出结果 30 - 减 - 得到负数或是一个数减去另一个数 a - b 输出结果 -10 * 乘 - 两个数相乘 ...

  4. spring源码学习之容器的基本实现

    最近想拿出一部分时间来学习一下spring的源码,还特意买了一本书结合来看,当然主要是学习并跟着作者的思路来踏上学习spring的源码的道路,特意在此记录一下,<spring源码深度解析> ...

  5. javase(14)_java基础增强

    一.Eclipse的使用 1.在eclipse下Java程序的编写和run as,debug as,及java运行环境的配置. 2.快捷键的配置,常用快捷键: •内容提示:Alt + / •快速修复: ...

  6. baidumap demo(一)

    覆盖物概述 地图上自定义的标注点和覆盖物我们统称为地图覆盖物.您可以通过定制BMKAnnotation和BMKOverlay来添加对应的标注点和覆盖物.地图覆盖物的设计遵循数据与View分离的原则,B ...

  7. swift-通知的基本使用

    swift-通知的基本使用   //通知的使用 1.发通知.(以这条通知为例,通知名字:nickNameNotification 通知参数:title) NSNotificationCenter.de ...

  8. 【计数】51nod1677 treecnt

    要将答案看做是小问题的贡献和 Description 给定一棵n个节点的树,从1到n标号.选择k个点,你需要选择一些边使得这k个点通过选择的边联通,目标是使得选择的边数最少. 现需要计算对于所有选择k ...

  9. 【转】ERROR 1819 (HY000): Your password does not satisfy the current policy requirements

    为了加强安全性,MySQL5.7为root用户随机生成了一个密码,在error log中,关于error log的位置,如果安装的是RPM包,则默认是/var/log/mysqld.log. 一般可通 ...

  10. S3C6410串口平台设备注册流程分析

    1.mdesc->map_io() start_kernel -->setup_arch(&command_line); -->paging_init(mdesc); --& ...